945 resultados para Fluorescent Brightener 28
Resumo:
Arthropods are known to use silk for a number of different purposes including web construction, shelter building, leaf tying, construction of pupal cocoons, and as a safety line when dislodged from a substrate (Alexander, 1961; Fitzgerald, 1983; Common, 1990). Across the arthropods, silk displays a diversity of material properties and chemical constituents and is produced from glands with different evolutionary origins (Craig, 1997). Among insects, larval Lepidoptera are prolific producers of silk. Because many lepidopteran larvae are pests, an ability to interfere with silk production or, at the very least, an understanding of how silk is used, could provide new options for pest control. After testing many known fluorescent dyes, we found that Fluorescent Brightener 28 (also known as Calcofluor White M2R) (Sigma-Aldrich Pty Ltd, Sydney, NSW, Australia), an optical brightener used in the textile industry, binds to arthropod silk in a simple staining reaction, causing it to fluoresce under ultraviolet (UV) light. Such brighteners have also been used in insect gut content analysis (Schlein & Muller, 1995; Hugo et al., 2003). Here we describe the method of visualizing arthropod silk on plant surfaces, using as a model the thin, barely visible, single strands of silk produced by Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) neonates.
Resumo:
The cell organelles of the coenocytic alga Codium fragile (Sur.) Hariot aggregated rapidly and protoplasts were formed when its protoplasm was extruded out in seawater. Continuous observation showed that there were long and gelatinous threads connecting the cell organelles. The threads contracted, and thus the cell organelles aggregated into protoplasmic masses. The enzyme digestion experiments and Coomassie Brilliant Blue and Anthrone stainings showed that the long and gelatinous threads involved in the formation of the protoplasts might include protein and saccharides as structure components. Nile Red staining indicated that the protoplast primary envelope was non-lipid at first, and then lipid materials integrated into its surface gradually. The fluorescent brightener staining indicated that the cell wall did not regenerate in the newly formed protoplasts and they all disintegrated within 72 h after formation. Transmission electron microscopy of the cell wall of wild C. fragile showed electron-dense material embedded in the whole cell wall at regular intervals. The experiments indicated that C. fragile would be a suitable model alga for studying the formation of protoplasts.
Resumo:
We have studied the dynamics of excitation transfer between two conjugated polyene molecules whose intermolecular separation is comparable to the molecular dimensions. We have employed a correlated electron model that includes both the charge-charge, charge-bond, and bond-bond intermolecular electron repulsion integrals. We have shown that the excitation transfer rate varies as inverse square of donor-acceptor separation R-2 rather than as R-6, suggested by the Foumlrster type of dipolar approximation. Our time-evolution study alsom shows that the orientational dependence on excitation transfer at a fixed short donor-acceptor separation cannot be explained by Foumlrster type of dipolar approximation beyond a certain orientational angle of rotation of an acceptor polyene with respect to the donor polyene. The actual excitation transfer rate beyond a certain orientational angle is faster than the Foumlrster type of dipolar approximation rate. We have also studied the excitation transfer process in a pair of push-pull polyenes for different push-pull strengths. We have seen that, depending on the push-pull strength, excitation transfer could occur to other dipole coupled states. Our study also allows for the excitation energy transfer to optically dark states which are excluded by Foumlrster theory since the one-photon transition intensity to these states (from the ground state) is zero.
Resumo:
Dansylcadaverine, a cationic fluorescent probe binds to bacterial lipopolysaccharide and lipid A, and is displaced competitively by other compounds which possess affinity toward endotoxins. The binding parameters of dansylcadaverine for lipid A were determined by Scatchard analysis to be two apparently equivalent sites with apparent dissociation constants (Kd) ranging between 16 μM to 26 μM, while that obtained for core glycolipid from Salmonella minnesota Re595 yielded a Kd of 22 μM to 28 μM with three binding sites. The Kd of polymyxin B for lipid A was computed from dansylcadaverine displacement by the method of Horovitz and Levitzki (Horovitz, A., and Levitzki, A. (1987) Proc. Natl. Acad. Sci. USA 84, 6654–6658). The applicability of this method for analyzing fluorescence data was validated by comparing the Kds of melittin for lipid A obtained by direct Scatchard analysis, and by the Horovitz-Levitzki method. The displacement of dansylcadaverine from lipid A by polymyxin B was distinctly biphasic with Kds for polymyxin B-lipid A interactions corresponding to 0.4 μM and 1.5 μM, probably resulting as a consequence of lipid A being a mixture of mono- and di-phosphoryl species. This was not observed with core glycolipid, for which the Kd for polymyxin was estimated to range from 1.1 μM to 5.8 μM. The use of dansylcadaverine as a displacement probe offers a novel and convenient method of quantitating the interactions of a wide variety of substances with lipid A.
Resumo:
Cholesterol is an essential component in the membranes of most eukaryotic cells, in which it mediates many functions including membrane fluidity, permeability and the formation of ordered membrane domains. In this work a fluorescent and a non-fluorescent cholesterol analog were characterized as tools to study cholesterol. Next, these analogs were used to study two specific cell biological processes that involve cholesterol, i.e. the structure and function of ordered membrane domains/rafts and intracellular cholesterol transport. The most common method for studying ordered membrane domains is by disrupting them by cholesterol depletion. Because cholesterol depletion affects many cellular functions besides those mediated by membrane domains, this procedure is highly unspecific. The cellular exchange of cholesterol by desmosterol as a tool to study ordered membrane domains was characterized. It turned out that the ability of desmosterol to form and stabilize membrane domains in vitro was weaker compared to cholesterol. This result was reinforced by atomistic scale simulations that indicated that desmosterol has a lower ordering effect on phospholipid acyl chains. Three procedures were established for exchanging cellular cholesterol by desmosterol. In cells in which desmosterol was the main sterol, insulin signaling was attenuated. The results suggest that this was caused by desmosterol destabilizing membrane rafts. Contrary to its effect on ordered membrane domains it was found that replacing cholesterol by desmosterol does not change cell growth/viability, subcellular sterol distribution, Golgi integrity, secretory pathway, phospholipid composition and membrane fluidity. Together these results suggest that exchanging cellular cholesterol by desmosterol provides a selective tool for perturbing rafts. Next, the importance of cholesterol for the structure and function of caveolae was analyzed by exchanging the cellular cholesterol by desmosterol. The sterol exchange reduced the stability of caveolae as determined by detergent resistance of caveolin-1 and heat resistance of caveolin-1 oligomers. Also the sterol exchange led to aberrations in the caveolar structure; the morphology of caveolae was altered and there was a larger variation in the amount of caveolin-1 molecules per caveola. These results demonstrate that cholesterol is important for caveolar stability and structural homogeneity. In the second part of this work a fluorescent cholesterol analog was characterized as a tool to study cholesterol transport. Tight control of the intracellular cholesterol distribution is essential for many cellular processes. An important mechanism by which cells regulate their membrane cholesterol content is by cholesterol traffic, mostly from the plasma membrane to lipid droplets. The fluorescent sterol probe BODIPY-cholesterol was characterized as a tool to analyze cholesterol transport between the plasma membrane, the endoplasmic reticulum (ER) and lipid droplets. The behavior of BODIPY-cholesterol was compared to that of natural sterols, using both biochemical and live-cell microcopy assays. The results show that the transport kinetics of BODIPY-cholesterol between the plasma membrane, the ER and lipid droplets is similar to that of unesterified cholesterol. Next, BODIPY-cholesterol was utilized to analyze the importance of oxysterol binding protein related proteins (ORPs) for cholesterol transport between the plasma membrane, the ER, and lipid droplets in mammalian cells. By overexpressing all human ORPs it turned out that especially ORP1S and ORP2 enhanced sterol transport from the plasma membrane to lipid droplets. Our results suggest that the increased sterol transport takes place between the plasma membrane and ER and not between the ER and lipid droplets. Simultaneous knockdown of ORP1S and ORP2 resulted in a moderate but significant inhibition of sterol traffic from the plasma membrane to ER and lipid droplets, suggesting a physiological role for these ORPs in this process. The two phenylalanines in an acidic tract (FFAT) motif in ORPs, which mediates interaction with vesicle associated membrane protein associated proteins (VAPs) in the ER, was not necessary for mediating sterol transport. However, VAP silencing slowed down sterol transport, most likely by destabilizing ORPs containing a FFAT motif.
Resumo:
The quantification of protein-ligand interactions is essential for systems biology, drug discovery, and bioengineering. Ligand-induced changes in protein thermal stability provide a general, quantifiable signature of binding and may be monitored with dyes such as Sypro Orange (SO), which increase their fluorescence emission intensities upon interaction with the unfolded protein. This method is an experimentally straightforward, economical, and high-throughput approach for observing thermal melts using commonly available real-time polymerase chain reaction instrumentation. However, quantitative analysis requires careful consideration of the dye-mediated reporting mechanism and the underlying thermodynamic model. We determine affinity constants by analysis of ligand-mediated shifts in melting-temperature midpoint values. Ligand affinity is determined in a ligand titration series from shifts in free energies of stability at a common reference temperature. Thermodynamic parameters are obtained by fitting the inverse first derivative of the experimental signal reporting on thermal denaturation with equations that incorporate linear or nonlinear baseline models. We apply these methods to fit protein melts monitored with SO that exhibit prominent nonlinear post-transition baselines. SO can perturb the equilibria on which it is reporting. We analyze cases in which the ligand binds to both the native and denatured state or to the native state only and cases in which protein:ligand stoichiometry needs to treated explicitly.
Resumo:
This paper presents a dimmable electronic ballast designed for multiple fluorescent lamps applications. A ZCS-PWM Boost rectifier and a classical resonant Full-Bridge inverter compose this new electronic ballast, providing conditions for the obtaining of high input power-factor, and soft-switching processes for all semiconductor devices employed in the structure. The instantaneous average input current control technique is employed in the Boost rectifier. Concerning the Full-Bridge inverter, it is controlled by the imposition of phase-shift in the current processed through the sets of resonant filters + lamps, according to an adaptation in a specially designed control IC, called IR2159. Experimental results are presented in order to validate the analyses developed in this paper.
Resumo:
The aim of this study was to assess and apply a microsatellite multiplex system for parentage determination in alpacas. An approach for parentage testing based on 10 microsatellites was evaluated in a population of 329 unrelated alpacas from different geographical zones in Peru. All microsatellite markers, which amplified in two multiplex reactions, were highly polymorphic with a mean of 14.5 alleles per locus (six to 28 alleles per locus) and an average expected heterozygosity (H-E) of 0.8185 (range of 0.698-0.946). The total parentage exclusion probability was 0.999456 for excluding a candidate parent from parentage of an arbitrary offspring, given only the genotype of the offspring, and 0.999991 for excluding a candidate parent from parentage of an arbitrary offspring, given the genotype of the offspring and the other parent. In a case test of parentage assignment, the microsatellite panel assigned 38 (from 45 cases) offspring parentage to 10 sires with LOD scores ranging from 2.19 x 10(+13) to 1.34 x 10(+15) and Delta values ranging from 2.80 x 10(+12) to 1.34 x 10(+15) with an estimated pedigree error rate of 15.5%. The performance of this multiplex panel of markers suggests that it will be useful in parentage testing of alpacas.
Resumo:
The Pacific white shrimp, Litopenaeus vannamei (Penaeidae), represents about 95% of all Brazilian shrimp production. The Brazilian L. vannamei foundation broodstock was made up of specimens collected from different American Pacific sites, but little information was collected on the genetic structure of the broodstock. We used the fluorescence amplified fragment length polymorphism (fAFLP) method to study the genetic diversity of L. vannamei broodstock lines 03CMF1 and 03CBF1 originally produced by breeder-shrimps imported mainly from Panama and Ecuador, although wild individuals from other localities may also have been used in producing these two lines. Our results showed a total of 93 polymorphic bands ranging from 50 to 500 bp, the mean Nei's genetic diversity calculated for the total sample was 13.4% and identity and genetic distance analyses indicated high genetic homogeneity within and between both the broodstock lineages studied which suggests that they had similar genetic structure. These results may represent an important tool for the appropriate management of L. vannamei broodstocks. Copyright by the Brazilian Society of Genetics.
Resumo:
Background Transformed cells of Escherichia coli DH5-α with pGFPuv, induced by IPTG (isopropyl-β-d-thiogalactopyranoside), express the green fluorescent protein (gfpuv) during growth phases. E. coli subjected to the combination of selective permeation by freezing/thawing/sonication cycles followed by the three-phase partitioning extraction (TPP) method were compared to the direct application of TPP to the same culture of E. coli on releasing gfpuv from the over-expressing cells. Material and Methods Cultures (37°C/100 rpm/ 24 h; μ = 0.99 h-1 - 1.10 h-1) of transformed (pGFP) Escherichia coli DH5-α, expressing the green fluorescent protein (gfpuv, absorbance at 394 nm and emission at 509 nm) were sonicated in successive intervals of sonication (25 vibrations/pulse) to determine the maximum amount of gfpuv released from the cells. For selective permeation, the transformed previously frozen (-75°C) cells were subjected to three freeze/thaw (-20°C/ 0.83°C/min) cycles interlaid by sonication (3 pulses/ 6 seconds/ 25 vibrations). The intracellular permeate with gfpuv in extraction buffer (TE) solution (25 mM Tris-HCl, pH 8.0, 1 mM β-mercaptoethanol β-ME, 0.1 mM PMSF) was subjected to the three-phase partitioning (TPP) method with t-butanol and 1.6 M ammonium sulfate. Sonication efficiency was verified on the application to the cells previously treated by the TPP method. The intra-cell releases were mixed and eluted through methyl HIC column with a buffer solution (10 mM Tris-HCl, 10 mM EDTA, pH 8.0). Results The sonication maximum released amount obtained from the cells was 327.67 μg gfpuv/mL (20.73 μg gfpuv/mg total proteins – BSA), after 9 min of treatment. Through the selective permeation by three repeated freezing/thawing/sonication cycles applied to the cells, a close content of 241.19 μg gfpuv/mL (29.74 μg gfpuv/mg BSA) was obtained. The specific mass range of gfpuv released from the same cultures, by the three-phase partitioning (TPP) method, in relation to total proteins, was higher, between 107.28 μg/mg and 135.10 μg/mg. Conclusions The selective permeation of gfpuv by freezing/thawing/sonication followed by TPP separation method was equivalent to the amount of gfpuv extracted from the cells directly by TPP; although selective permeation extracts showed better elution through the HIC column.
Resumo:
Neuropharmacology (Elsevier) Special Issue entitled "Fluorescent Tools in Neuropharmacology" includes ten contributions from key researchers in this field. These contributions comprise reviews and orginial research articles.
Resumo:
The neurodegeneration and amyloid deposition of sporadic Alzheimer disease (AD) also occur in familial AD and in all trisomy-21 Down syndrome (DS) patients, suggesting a common pathogenetic mechanism. We investigated whether defective processing of damaged DNA might be that mechanism, as postulated for the neurodegeneration in xeroderma pigmentosum, a disease with defective repair not only of UV radiation-induced, but also of some oxygen free radical-induced, DNA lesions. We irradiated AD and DS skin fibroblasts or blood lymphocytes with fluorescent light, which is known to cause free radical-induced DNA damage. The cells were then treated with either beta-cytosine arabinoside (araC) or caffeine, and chromatid breaks were quantified. At least 28 of 31 normal donors and 10 of 11 donors with nonamyloid neurodegenerations gave normal test results. All 12 DS, 11 sporadic AD, and 16 familial AD patients tested had abnormal araC and caffeine tests, as did XP-A cells. In one of our four AD families, an abnormal caffeine test was found in all 10 afflicted individuals (including 3 asymptomatic when their skin biopsies were obtained) and in 8 of 11 offspring at a 50% risk for AD. Our tests could prove useful in predicting inheritance of familial AD and in supporting, or rendering unlikely, the diagnosis of sporadic AD in patients suspected of having the disease.