125 resultados para Flares
Resumo:
Solar flares were first observed by plain eye in white light by William Carrington in England in 1859. Since then these eruptions in the solar corona have intrigued scientists. It is known that flares influence the space weather experienced by the planets in a multitude of ways, for example by causing aurora borealis. Understanding flares is at the epicentre of human survival in space, as astronauts cannot survive the highly energetic particles associated with large flares in high doses without contracting serious radiation disease symptoms, unless they shield themselves effectively during space missions. Flares may be at the epicentre of man s survival in the past as well: it has been suggested that giant flares might have played a role in exterminating many of the large species on Earth, including dinosaurs. Having said that prebiotic synthesis studies have shown lightning to be a decisive requirement for amino acid synthesis on the primordial Earth. Increased lightning activity could be attributed to space weather, and flares. This thesis studies flares in two ways: in the spectral and the spatial domain. We have extracted solar spectra using three different instruments, namely GOES (Geostationary Operational Environmental Satellite), RHESSI (Reuven Ramaty High Energy Solar Spectroscopic Imager) and XSM (X-ray Solar Monitor) for the same flares. The GOES spectra are low resolution obtained with a gas proportional counter, the RHESSI spectra are higher resolution obtained with Germanium detectors and the XSM spectra are very high resolution observed with a silicon detector. It turns out that the detector technology and response influence the spectra we see substantially, and are important to understanding what conclusions to draw from the data. With imaging data, there was not such a luxury of choice available. We used RHESSI imaging data to observe the spatial size of solar flares. In the present work the focus was primarily on current solar flares. However, we did make use of our improved understanding of solar flares to observe young suns in NGC 2547. The same techniques used with solar monitors were applied with XMM-Newton, a stellar X-ray monitor, and coupled with ground based Halpha observations these techniques yielded estimates for flare parameters in young suns. The material in this thesis is therefore structured from technology to application, covering the full processing path from raw data and detector responses to concrete physical parameter results, such as the first measurement of the length of plasma flare loops in young suns.
Resumo:
Schrijver, C.J. and Brown, D.S., 2000, Oscillations in the magnetic field of the solar corona in response to flares near the photosphere, Astrophysical Journal, 537, L69-L72. Sponsorship: PPARC
Resumo:
High-cadence, multiwavelength optical observations of a solar active region (NOAA AR 10969), obtained with the Swedish Solar Telescope, are presented. Difference imaging of white light continuum data reveals a white-light brightening, 2 minutes in duration, linked to a cotemporal and cospatial C2.0 flare event. The flare kernel observed in the white-light images has a diameter of 300 km, thus rendering it below the resolution limit of most space-based telescopes. Continuum emission is present only during the impulsive stage of the flare, with the effects of chromospheric emission subsequently delayed by approximate to 2 minutes. The localized flare emission peaks at 300% above the quiescent flux. This large, yet tightly confined, increase in emission is only resolvable due to the high spatial resolution of the Swedish Solar Telescope. An investigation of the line-of-sight magnetic field derived from simultaneous MDI data shows that the continuum brightening is located very close to a magnetic polarity inversion line. In addition, an Ha flare ribbon is directed along a region of rapid magnetic energy change, with the footpoints of the ribbon remaining cospatial with the observed white-light brightening throughout the duration of the flare. The observed flare parameters are compared with current observations and theoretical models for M- and X-class events and we determine the observed white-light emission is caused by radiative back-warming. We suggest that the creation of white-light emission is a common feature of all solar flares.
Resumo:
We present simultaneous and continuous observations of the Halpha, Hbeta, He I D-3, Na I D-1,D-2 doublet and the Ca II H&K lines for the RS CVn system HR 1099. The spectroscopic observations were obtained during the MUSICOS 1998 campaign involving several observatories and instruments, both echelle and long-slit spectrographs. During this campaign, HR 1099 was observed almost continuously for more than 8 orbits of 2.(d)8. Two large optical flares were observed, both showing an increase in the emission of Halpha, Ca II H K, Hbeta and He I D-3 and a strong filling-in of the Na I D-1, D-2 doublet. Contemporary photometric observations were carried out with the robotic telescopes APT-80 of Catania and Phoenix-25 of Fairborn Observatories. Maps of the distribution of the spotted regions on the photosphere of the binary components were derived using the Maximum Entropy and Tikhonov photometric regularization criteria. Rotational modulation was observed in Halpha and He I D-3 in anti-correlation with the photometric light curves. Both flares occurred at the same binary phase (0.85), suggesting that these events took place in the same active region. Simultaneous X-ray observations, performed by ASM on board RXTE, show several flare-like events, some of which correlate well with the observed optical flares. Rotational modulation in the X-ray light curve has been detected with minimum flux when the less active G5 V star was in front. A possible periodicity in the X-ray flare-like events was also found.
Resumo:
We present a Bayesian-odds-ratio-based algorithm for detecting stellar flares in light-curve data. We assume flares are described by a model in which there is a rapid rise with a half-Gaussian profile, followed by an exponential decay. Our signal model also contains a polynomial background model required to fit underlying light-curve variations in the data, which could otherwise partially mimic a flare. We characterize the false alarm probability and efficiency of this method under the assumption that any unmodelled noise in the data is Gaussian, and compare it with a simpler thresholding method based on that used in Walkowicz et al. We find our method has a significant increase in detection efficiency for low signal-to-noise ratio (S/N) flares. For a conservative false alarm probability our method can detect 95 per cent of flares with S/N less than 20, as compared to S/N of 25 for the simpler method. We also test how well the assumption of Gaussian noise holds by applying the method to a selection of 'quiet' Kepler stars. As an example we have applied our method to a selection of stars in Kepler Quarter 1 data. The method finds 687 flaring stars with a total of 1873 flares after vetos have been applied. For these flares we have made preliminary characterizations of their durations and and S/N.
Resumo:
We propose to observe the M8.5 dwarf SCR J1845-6357 with XMM-Newton EPIC for 60 ks. Very low-mass M dwarfs show a distinct drop in X-ray luminosity compared to slightly more massive M dwarfs. Surprisingly, this does not happen at the mass threshold where M dwarfs become fully convective (M4), but at significantly lower masses (M8). These very low mass stars seem to have a flaring behaviour different from earlier type stars: they display either occasional large flares or a very low-level "flickering" in their X-ray light curves, but not the canonical power-law flare-energy distribution observed for the Sun and other cool stars. Our aim is to collect a long-duration light curve for one of the most nearby ultracool dwarfs to quantify how its flare-energy distribution differs from earlier type stars.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
We derive simple analytic expressions for the continuum light curves and spectra of flaring and flickering events that occur over a wide range of astrophysical systems. We compare these results to data taken from the cataclysmic variable SS Cygni and also from SN 1987A, deriving physical parameters for the material involved. Fits to the data indicate a nearly time-independent photospheric temperature arising from the strong temperature dependence of opacity when hydrogen is partially ionized.
Resumo:
We examine the flaring behaviour of the cataclysmic variable AE Aqr in the context of the `magnetic propeller' model for this system. The flares are thought to arise from collisions between high-density regions in the material expelled from the system after interaction with the rapidly rotating magnetosphere of the white dwarf. We calculate the first quantitative models for the flaring and calculate the time-dependent emergent optical spectra from the resulting hot, expanding ball of gas. We compare the results under different assumptions to observations and derive values for the mass, length-scale and temperature of the material involved in the flare. We see that the fits suggest that the secondary star in this system has Population II composition.
Resumo:
Using high-time-resolution (72 ms) spectroscopy of AE Aqr obtained with LRIS on Keck II we have determined the spectrum and spectral evolution of a small flare. Continuum and integrated line fluxes in the flare spectrum are measured, and the evolution of the flare is parametrized for future comparison with detailed models of the flares. We find that the velocities of the flaring components are consistent with those previously reported for AE Aqr by Welsh, Horne & Gomer and Horne. The characteristics of the 33-s oscillations are investigated: we derive the oscillation amplitude spectrum, and from that determine the spectrum of the heated regions on the rotating white dwarf. Blackbody fits to the major and minor pulse spectra and an analysis of the emission-line oscillation properties highlight the shortfalls in the simple hotspot model for the oscillations.
Resumo:
We review our understanding of the prototype ``Propeller'' system AE Aqr and we examine its flaring behaviour in detail. The flares are thought to arise from collisions between high density regions in the material expelled from the system after interaction with the rapidly rotating magnetosphere of the white dwarf. We show calculations of the time-dependent emergent optical spectra from the resulting hot, expanding ball of gas and derive values for the mass, lengthscale and temperature of the material involved. We see that the fits suggest that the secondary star in this system has reduced metal abundances and that, counter-intuitively, the evolution of the fireballs is best modelled as isothermal.
Resumo:
Objective. To develop widely acceptable preliminary criteria of global flare for childhood-onset systemic lupus erythematosus (cSLE).Methods. Pediatric rheumatologists (n = 138) rated a total of 358 unique patient profiles with information about the cSLE flare descriptors from 2 consecutive visits: patient global assessment of well-being, physician global assessment of disease activity (MD-global), health-related quality of life, anti-double-stranded DNA antibodies, disease activity index scores, protein: creatinine (P:C) ratio, complement levels, and erythrocyte sedimentation rate (ESR). Based on 2,996 rater responses about the course of cSLE (baseline versus followup), the accuracy (sensitivity, specificity, and area under the receiver operating characteristic curve) of candidate flare criteria was assessed. An international consensus conference was held to rank these candidate flare criteria as per the American College of Rheumatology recommendations for the development and validation of criteria sets.Results. The highest-ranked candidate criteria considered absolute changes (Delta) of the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) or British Isles Lupus Assessment Group (BILAG), MD-global, P:C ratio, and ESR; flare scores can be calculated (0.5 x Delta SLEDAI + 0.45 x Delta P:C ratio + 0.5 x Delta MD-global + 0.02 x Delta ESR), where values of >= 1.04 are reflective of a flare. Similarly, BILAG-based flare scores (0.4 x Delta BILAG + Delta 0.65 x Delta P:C ratio + 0.5 + Delta MD-global + 0.02 x Delta ESR) of >= 1.15 were diagnostic of a flare. Flare scores increased with flare severity.Conclusion. Consensus has been reached on preliminary criteria for global flares in cSLE. Further validation studies are needed to confirm the usefulness of the cSLE flare criteria in research and for clinical care.
Resumo:
This work is consideration of an analysis of second-order (nonlinear analysis) applied to e metal towers and flares. The analysis is mainly done using the wind efforts and the weight of the structure. The analysis itself is carried out with the aid of a structural analysis software, SAP2000 where two proposes modeling. The first for the linear effects and the second for the nonlinear effects
Resumo:
This work is consideration of an analysis of second-order (nonlinear analysis) applied to e metal towers and flares. The analysis is mainly done using the wind efforts and the weight of the structure. The analysis itself is carried out with the aid of a structural analysis software, SAP2000 where two proposes modeling. The first for the linear effects and the second for the nonlinear effects
Resumo:
Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (sub-mm) emission of the source Sgr A * associated with the supermassive black hole at the center of our Galaxy. Our goal was to monitor the activity of Sgr A* at different wavelengths in order to constrain the emitting processes and gain insight into the nature of the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007. Results. The observations reveal remarkable variability in the NIR and sub-mm during the five nights of observation. No source was detected in the MIR, but we derived the lowest upper limit for a flare at 8.59 mu m (22.4 mJy with A(8.59 mu m) = 1.6 +/- 0.5). This observational constraint makes us discard the observed NIR emission as coming from a thermal component emitting at sub-mm frequencies. Moreover, comparison of the sub-mm and NIR variability shows that the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of our five-night campaign involving three flares. We explain this behavior by a loss of electrons to the system and/or by a decrease in the magnetic field, as might conceivably occur in scenarios involving fast outflows and/or magnetic reconnection.