905 resultados para Fisheries biology
Resumo:
Globally, small-scale fisheries (SSFs) are driven by climate, governance, and market factors of social-ecological change, presenting both challenges and opportunities. The ability of small-scale fishermen and buyers to adapt to changing conditions allows participants to survive economic or environmental disturbances and to benefit from optimal conditions. This study presented here identifies key large-scale factors that drive SSFs in California to shift focus among targets and that dictate long-term trends in landings. We use Elinor Ostrom’s Social-Ecological System (SES) framework to apply an interdisciplinary approach when identifying potential factors and when understanding the complex dynamics of these fisheries. We analyzed the interactions among Monterey Bay SSFs over the past four decades since the passage of the Magnuson Stevens Fisheries Conservation and Management Act of 1976. In this region, the Pacific sardine (Sardinops sagax), northern anchovy (Engraulis mordax), and market squid (Loligo opalescens) fisheries comprise a tightly linked system where shifting focus among fisheries is a key element to adaptive capacity and reduced social and ecological vulnerability. Using a cluster analysis of landings, we identified four modes from 1974 to 2012 that were dominated by squid, sardine, anchovy, or lacked any dominance, enabling us to identify external drivers attributed to a change in fishery dominance during seven distinct transition points. Overall, we show that market and climate factors drive the transitions among dominance modes. Governance phases most dictated long-term trends in landings and are best viewed as a response to changes in perceived biomass and thus a proxy for biomass. Our findings suggest that globally, small-scale fishery managers should consider enabling shifts in effort among fisheries and retaining existing flexibility, as adaptive capacity is a critical determinant for social and ecological resilience.
Resumo:
Plaice (Pleuronectes platessa, L.) and dab (Limanda limanda, L.) are among the most abundant flatfishes in the north-eastern Atlantic region and the dominant species in shallow coastal nursery grounds. With increasing pressures on commercial flatfish stocks in combination with changing coastal environments, better knowledge of population dynamics during all life stages is needed to evaluate variability in year-class strength and recruitment to the fishery. The aim of this research was to investigate the complex interplay of biotic and abiotic habitat components influencing the distribution, density and growth of plaice and dab during the vulnerable juvenile life stage and to gain insight in spatial and temporal differences in nursery habitat quality along the west coast of Ireland. Intraspecific variability in plaice diet was observed at different spatial scales and showed a link with condition, recent growth and morphology. This highlights the effect of food availability on habitat quality and the need to consider small scale variation when attempting to link habitat quality to feeding, growth and condition of juvenile flatfish. There was evidence of trophic, spatial and temporal resource partitioning between juvenile plaice and dab allowing the co-existence of morphologically similar species in nursery grounds. In the limited survey years there was no evidence that the carrying capacity of the studied nursery grounds was reached but spatial and interannual variations in fish growth indicated fluctuating environments in terms of food availability, predator densities, sediment features and physico-chemical conditions. Predation was the most important factor affecting habitat quality for juvenile plaice and dab with crab densities negatively correlated to fish condition whereas shrimp densities were negatively associated with densities of small-sized juveniles in spring. A comparison of proxies for fish growth showed the advantage of Fulton’s K for routine use whereas RNA:DNA ratios proved less powerful when short-term environmental fluctuations are lacking. This study illustrated how distinct sets of habitat features can drive spatial variation in density and condition of juvenile flatfish highlighting the value of studying both variables when modeling habitat requirements. The habitat models generated in this study also provide a powerful tool to predict potential climate and anthropogenic impacts on the distribution and condition of juveniles in flatfish nurseries. The need for effective coastal zone management was emphasized to ensure a sustainable use of coastal resources and successful flatfish recruitment to the fishery.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Population parameters of the shrimp Xiphopenaeus kroyeri (Heller, 1862) (sex ratio, length-frequency distributions (carapace length, CL), growth, lifespan, size of sexual maturity, spawning and recruitment) were analyzed in a long-term study from January 1998 through June 2003. The data on these parameters were collected and analyzed to test the hypothesis that the main period of juvenile recruitment in the bay coincides with the period of fishery closures currently designated by the Brazilian Institute of Environment and Renewable Natural Resources. Monthly collections were conducted along the southeastern Brazilian coast, using a shrimp fishing boat with “double-rig” nets sampling at stations up to 40 m depth. Sex ratios were female-biased only in zones with high reproductive activity such as in stations deeper than 15 m (χ2 test, p<0.05). The mean size of males and females was 15.3 ± 3.1 mm CL and 16.2 ± 4.7 mm CL, respectively, with size at sexual maturity estimates (CL50) of 14.8 mm for males and 15.5 mm for females. Mean growth curves provided estimates of CL∞ = 29.31 mm, k = 0.009/day, t0=−0.25 and CL∞ = 35.33 mm, k = 0.006/day, t0=−0.23 for males and females, respectively, and average lifespans of 1.35 for males and 2.12 years for females. Recruitment and abundances of reproductive females were highly correlated with the environmental factors such as higher water temperature and finer-grained bottom sediment (canonical correlation, r=0.63, p<0.001). The reproductive peaks in February-April 1998, March-May 1999 and February-May 2002 were followed by recruitment peaks in May-July 1998, July-September 1999 and April-June 2002, respectively. Thus, the proposed period of fisheries closure (March to May) does not coincide with the main recruitment periods observed for X. kroyeri.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Back-reef seascapes represent critical habitat for juvenile and adult fishes. Patch reef, seagrass, and mangrove habitats form a heterogeneous mosaic, often linked by species that use reefs as structure during the day and make foraging migrations into soft-bottom habitat at night. Artificial reefs are used to model natural patch reefs, however may not function equivalently as fish habitat. To study the relative value of natural and artificial patch reefs as fish habitat, these communities in the Sea of Abaco, Bahamas were compared using roving diver surveys and time-lapse photography. Diel turnover in fish abundance, recorded with time-lapse photography and illuminated by infrared light, was quantified across midday, dusk, and night periods to explore possible effects of reef type (artificial vs. natural) on these patterns. Diurnal communities on natural reefs exhibited greater fish abundance, species richness, and functional diversity compared to artificial reefs. Furthermore, both types of reef communities exhibited a significant shift across the diel period, characterized by a decline in total fish density at night, especially for grunts (Haemulidae). Cross-habitat foraging migrations by diurnal or nocturnal species, such as haemulids, are likely central drivers of this twilight turnover and can represent important energy and nutrient subsidies. Time-lapse surveys provided more consistent measures of reef fish assemblages for the smaller artificial reef habitats, yet underestimated abundance of certain taxa and species richness on larger patch habitats when compared to the roving diver surveys. Time-lapse photography complemented with infrared light represent a valuable non-invasive approach to studying behavior of focal species and their fine-scale temporal dynamics in shallow-reef communities.
Resumo:
The adaptive significance of herbivory in nature is not well understood. In order to document the conditions that select for an herbivorous feeding habit, we must first understand how such a diet is maintained, and the consequences of doing so. A few studies have begun to reveal mechanisms of maintaining herbivory (i.e. selective feeding, diet mixing, etc.) and the associated life history responses (i.e. growth, reproduction, etc.) in terrestrial and marine systems; however, studies of this kind are underrepresented in the freshwater literature. In this study, I use the sailfin molly (Poecilia latipinna) as a model organism to examine diet selectivity and the effects of an herbivorous diet on growth. To study food selectivity, sailfin mollies were fed either disturbed or intact periphyton mats from one of three localities within the Everglades (Water Conservation Area 3B, the Gap, or Chekika). Mats are structured with palatable algal species (i.e. greens and diatoms) comprising the inner components of the mat, and unpalatable species (i.e. cyanobacteria) comprising the outer edges. Fish gut contents were analyzed for each treatment and periphyton locality. Results suggest that when provided access to the inner components of the mats, fish preferentially eat more palatable algae. In a second experiment, effects of an herbivorous diet were examined using neonate sailfin mollies. Fish were fed either commercial food flakes, commercial algae flakes, or ground periphyton, and growth rate was measured weekly, from birth to 21 days. Fish fed the commercial diets grew at a faster rate and reached a larger final size than those fed periphyton. These results suggest that a periphyton diet is limited in nutritional elements compared to a pure algae diet and herbivorous organisms feeding upon it may experience negative effects on growth. By studying the costs and benefits of herbivory in a freshwater system, this paper contributes to a larger study of the question of why herbivory would evolve as an adaptation when seemingly inefficient compared to carnivorous and omnivorous diets.
Resumo:
pt.3 (1905)
Resumo:
pt.4 (1905)
Resumo:
pt.2 (1904)
Resumo:
pt.5 (1906)
Resumo:
pt.1 (1903)
Resumo:
The thesis documents a comprehensive systematic account of Vembenad lake fishes and to study the effect of physico-chemical parameters on the distribution and abundance of fishes in the lake. This study is expected to advance the knowledge on the biological aspects of two commercially important fishes of the lake which are very desirable for brackish water fish farming. Additionally, the results of the studies on the ecology as habitat, occurrence, season and abundance of all the recorded fishes of the lake end the commercially important fish species of the lake are also incorporated. A general appraisal on the detrimental factors which are adversely affecting the fisheries resources of the lake are presented and some measures of conservation are also suggested. The results of the present study are helpful in formulating suitable schemes for management of parts of the Vembenad lake for capture and culture fisheries
Resumo:
All biological aspects of the stock are of scientific interest. Specific biological parameters are used either in estimating; yield, or providing a basis for suggesting fisheries management strategies, growth, mortality and stock size are the main determinants of yield, and aspects such as the timing of spawning and recruitment are important in considering management measures. In fisheries science, fish biology contributes in two broad areas; a) Basic biology and distribution of resource spp b) Population dynamics of the species An exploited fish stock is viewed as a simple biological system consisting of stock-biomass which is increased by growth and recruitment, and is reduced by natural-mortality and fishing mortality.