859 resultados para Finite-depth Aquifer
Resumo:
We study weak solutions for a class of free-boundary problems which includes as a special case the classical problem of travelling gravity waves on water of finite depth. We show that such problems are equivalent to problems in fixed domains and study the regularity of their solutions. We also prove that in very general situations the free boundary is necessarily the graph of a function.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We extend the Miles mechanism of wind-wave generation to finite depth. A beta-Miles linear growth rate depending on the depth and wind velocity is derived and allows the study of linear growth rates of surface waves from weak to moderate winds in finite depth h. The evolution of beta is plotted, for several values of the dispersion parameter kh with k the wave number. For constant depths we find that no matter what the values of wind velocities are, at small enough wave age the beta-Miles linear growth rates are in the known deep-water limit. However winds of moderate intensities prevent the waves from growing beyond a critical wave age, which is also constrained by the water depth and is less than the wave age limit of deep water. Depending on wave age and wind velocity, the Jeffreys and Miles mechanisms are compared to determine which of them dominates. A wind-forced nonlinear Schrodinger equation is derived and the Akhmediev, Peregrine and Kuznetsov-Ma breather solutions for weak wind inputs in finite depth h are obtained.
Resumo:
Observations of horizontal and vertical variations in piezometric head in a homogeneous, laboratory aquifer are presented and discussed. The observed fluctuations are induced by a simple harmonic oscillation in the clear water reservoir acting across a sloping boundary. The data qualitatively supports existing theories in that higher harmonics are generated in the active forcing zone and that a significant increase in the inland, asymptotic watertable over height (relative to that found for the vertical boundary case) is observed. The observed overheight is shown to be accurately reproduced by existing small-amplitude perturbation theory. Detailed measurements in the vicinity of the sloping boundary reveal that the signal of generated higher harmonics is strongest near the sand surface and that vertical flows are significant in this region. The aquifer is of finite-depth and is influenced by capillary effects, the experimental data therefore exposes limitations of theories which are based on the assumption of a shallow aquifer free of capillary effects. The dispersive properties of the measured pressure wave in the aquifer are comparable to those found from field observations and likewise do not agree with those predicted by the capillary free, shallow aquifer theory. Although some improvement is obtained, discrepancies between the data and theory persist even when a finite-depth aquifer and capillary effects are considered in the theoretical model. Further sand column experiments eliminate a truncated capillary fringe as a possible contributor to these discrepancies. However, the neglect of horizontal flows in the fringe may have caused the discrepancies. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
[1] Comprehensive measurements are presented of the piezometric head in an unconfined aquifer during steady, simple harmonic oscillations driven by a hydrostatic clear water reservoir through a vertical interface. The results are analyzed and used to test existing hydrostatic and nonhydrostatic, small-amplitude theories along with capillary fringe effects. As expected, the amplitude of the water table wave decays exponentially. However, the decay rates and phase lags indicate the influence of both vertical flow and capillary effects. The capillary effects are reconciled with observations of water table oscillations in a sand column with the same sand. The effects of vertical flows and the corresponding nonhydrostatic pressure are reasonably well described by small-amplitude theory for water table waves in finite depth aquifers. That includes the oscillation amplitudes being greater at the bottom than at the top and the phase lead of the bottom compared with the top. The main problems with respect to interpreting the measurements through existing theory relate to the complicated boundary condition at the interface between the driving head reservoir and the aquifer. That is, the small-amplitude, finite depth expansion solution, which matches a hydrostatic boundary condition between the bottom and the mean driving head level, is unrealistic with respect to the pressure variation above this level. Hence it cannot describe the finer details of the multiple mode behavior close to the driving head boundary. The mean water table height initially increases with distance from the forcing boundary but then decreases again, and its asymptotic value is considerably smaller than that previously predicted for finite depth aquifers without capillary effects. Just as the mean water table over-height is smaller than predicted by capillarity-free shallow aquifer models, so is the amplitude of the second harmonic. In fact, there is no indication of extra second harmonics ( in addition to that contained in the driving head) being generated at the interface or in the interior.
Resumo:
The evolution of surface water waves in finite depth under wind forcing is reduced to an antidissipative Korteweg-de Vries-Burgers equation. We exhibit its solitary wave solution. Antidissipation accelerates and increases the amplitude of the solitary wave and leads to blow-up and breaking. Blow-up occurs in finite time for infinitely large asymptotic space so it is a nonlinear, dispersive, and antidissipative equivalent of the linear instability which occurs for infinite time. Due to antidissipation two given arbitrary and adjacent planes of constant phases of the solitary wave acquire different velocities and accelerations inducing breaking. Soliton breaking occurs in finite space in a time prior to the blow-up. We show that the theoretical growth in amplitude and the time of breaking are both testable in an existing experimental facility.
Resumo:
The finite depth of field of a real camera can be used to estimate the depth structure of a scene. The distance of an object from the plane in focus determines the defocus blur size. The shape of the blur depends on the shape of the aperture. The blur shape can be designed by masking the main lens aperture. In fact, aperture shapes different from the standard circular aperture give improved accuracy of depth estimation from defocus blur. We introduce an intuitive criterion to design aperture patterns for depth from defocus. The criterion is independent of a specific depth estimation algorithm. We formulate our design criterion by imposing constraints directly in the data domain and optimize the amount of depth information carried by blurred images. Our criterion is a quadratic function of the aperture transmission values. As such, it can be numerically evaluated to estimate optimized aperture patterns quickly. The proposed mask optimization procedure is applicable to different depth estimation scenarios. We use it for depth estimation from two images with different focus settings, for depth estimation from two images with different aperture shapes as well as for depth estimation from a single coded aperture image. In this work we show masks obtained with this new evaluation criterion and test their depth discrimination capability using a state-of-the-art depth estimation algorithm.
Resumo:
Special Issue in honor of Prof. Hans-Bjørn Foxby
Resumo:
We prove that for a large class of vorticity functions the crests of any corresponding traveling gravity water wave of finite depth are necessarily points of maximal horizontal velocity. We also show that for waves with nonpositive vorticity the pressure everywhere in the fluid is larger than the atmospheric pressure. A related a priori estimate for waves with nonnegative vorticity is also given.
Resumo:
A periodic structure of finite extent is embedded within an otherwise uniform two-dimensional system consisting of finite-depth fluid covered by a thin elastic plate. An incident harmonic flexural-gravity wave is scattered by the structure. By using an approximation to the corresponding linearised boundary value problem that is based on a slowly varying structure in conjunction with a transfer matrix formulation, a method is developed that generates the whole solution from that for just one cycle of the structure, providing both computational savings and insight into the scattering process. Numerical results show that variations in the plate produce strong resonances about the ‘Bragg frequencies’ for relatively few periods. We find that certain geometrical variations in the plate generate these resonances above the Bragg value, whereas other geometries produce the resonance below the Bragg value. The familiar resonances due to periodic bed undulations tend to be damped by the plate.
Resumo:
The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh–Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413–443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.
Resumo:
The spatial structure and phase velocity of tropopause disturbances localized around the subpolar jet in the Southern Hemisphere are investigated using 6-hourly European Centre for Medium-Range Weather Forecasts reanalysis data covering 15 yr (1979–93). The phase velocity and phase structure of the tropopause disturbances are in good agreement with those of an edge wave vertically trapped at the tropopause. However, the vertical distribution of the ratio of potential to kinetic energy exhibits maxima above and below the tropopause and a minimum around the tropopause, in contradiction to edge wave theory for which the ratio is unity throughout the troposphere and stratosphere. This difference in vertical structure between the observed tropopause disturbances and edge wave theory is attributed to the effects of a finite-depth tropopause together with the next-order corrections in Rossby number to quasigeostrophic dynamics
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Unicellular bottom-heavy swimming microorganisms are usually denser than the fluid in which they swim. In shallow suspensions, the bottom heaviness results in a gravitational torque that orients the cells to swim vertically upwards in the absence of fluid flow. Swimming cells thus accumulate at the upper surface to form a concentrated layer of cells. When the cell concentration is high enough, the layer overturns to form bioconvection patterns. Thin concentrated plumes of cells descend rapidly and cells return to the upper surface in wide, slowly moving upwelling plumes. When there is fluid flow, a second viscous torque is exerted on the swimming cells. The balance between the local shear flow viscous and the gravitational torques determines the cells' swimming direction, (gyrotaxis). In this thesis, the wavelengths of bioconvection patterns are studied experimentally as well as theoretically as follow; First, in aquasystem it is rare to find one species lives individually and when they swim they can form complex patterns. Thus, a protocol for controlled experiments to mix two species of swimming algal cells of \emph{C. rienhardtii} and \emph{C. augustae} is systematically described and images of bioconvection patterns are captured. A method for analysing images using wavelets and extracting the local dominant wavelength in spatially varying patterns is developed. The variation of the patterns as a function of the total concentration and the relative concentration between two species is analysed. Second, the linear stability theory of bioconvection for a suspension of two mixed species is studied. The dispersion relationship is computed using Fourier modes in order to calculate the neutral curves as a function of wavenumbers $k$ and $m$. The neutral curves are plotted to compare the instability onset of the suspension of the two mixed species with the instability onset of each species individually. This study could help us to understand which species contributes the most in the process of pattern formation. Finally, predicting the most unstable wavelength was studied previously around a steady state equilibrium situation. Since assuming steady state equilibrium contradicts with reality, the pattern formation in a layer of finite depth of an evolving basic state is studied using the nonnormal modes approach. The nonnormal modes procedure identifies the optimal initial perturbation that can be obtained for a given time $t$ as well as a given set of parameters and wavenumber $k$. Then, we measure the size of the optimal perturbation as it grows with time considering a range of wavenumbers for the same set of parameters to be able to extract the most unstable wavelength.
Resumo:
Objectives: The aim of this study was to analyze the stress distribution on dentin/adhesive interface (d/a) through a 3-D finite element analysis (FEA) varying the number and diameter of the dentin tubules orifice according to dentin depth, keeping hybrid layer (HL) thickness and TAǴs length constant. Materials and Methods: 3 models were built through the SolidWorks software: SD - specimen simulating superficial dentin (41 x 41 x 82 μm), with a 3 μm thick HL, a 17 μm length Tag, and 8 tubules with a 0.9 μm diameter restored with composite resin. MD - similar to M1 with 12 tubules with a 1.2 μm diameter, simulating medium dentin. DD - similar to M1 with 16 tubules with a 2.5 μm diameter, simulating deep dentin. Other two models were built in order to keep the diameter constant in 2.5 μm: MS - similar to SD with 8 tubules; and MM - similar to MD with 12 tubules. The boundary condition was applied to the base surface of each specimen. Tensile load (0.03N) was performed on the composite resin top surface. Stress field (maximum principal stress in tension - σMAX) was performed using Ansys Wokbench 10.0. Results: The peak of σMAX (MPa) were similar between SD (110) and MD (106), and higher for DD (134). The stress distribution pathway was similar for all models, starting from peritubular dentin to adhesive layer, intertubular dentin and hybrid layer. The peak of σMAX (MPa) for those structures was, respectively: 134 (DD), 56.9 (SD), 45.5 (DD), and 36.7 (MD). Conclusions: The number of dentin tubules had no influence in the σMAX at the dentin/adhesive interface. Peritubular and intertubular dentin showed higher stress with the bigger dentin tubules orifice condition. The σMAX in the hybrid layer and adhesive layer were going down from superficial dentin to deeper dentin. In a failure scenario, the hybrid layer in contact with peritubular dentin and adhesive layer is the first region for breaking the adhesion. © 2011 Nova Science Publishers, Inc.