926 resultados para Finite Elemente Methode (FEM)
Resumo:
Es wird ein Verfahren vorgestellt, mit dem stetige Zufallsgrößen rechnerunterstützt dargestellt und miteinander verknüpft werden können. Die Verteilungsfunktionen der Zufallsgrößen werden mit einem Finite-Elemente-Ansatz in einem endlichen Intervall [tmin; tmax] approximiert. Die Addition zweier Zufallsgrößen wird durch numerische Berechnung des Faltungsintegrals durchgeführt.
Resumo:
Der Vielelektronen Aspekt wird in einteilchenartigen Formulierungen berücksichtigt, entweder in Hartree-Fock Näherung oder unter dem Einschluß der Elektron-Elektron Korrelationen durch die Dichtefunktional Theorie. Da die Physik elektronischer Systeme (Atome, Moleküle, Cluster, Kondensierte Materie, Plasmen) relativistisch ist, habe ich von Anfang an die relativistische 4 Spinor Dirac Theorie eingesetzt, in jüngster Zeit aber, und das wird der hauptfortschritt in den relativistischen Beschreibung durch meine Promotionsarbeit werden, eine ebenfalls voll relativistische, auf dem sogenannten Minimax Prinzip beruhende 2-Spinor Theorie umgesetzt. Im folgenden ist eine kurze Beschreibung meiner Dissertation: Ein wesentlicher Effizienzgewinn in der relativistischen 4-Spinor Dirac Rechnungen konnte durch neuartige singuläre Koordinatentransformationen erreicht werden, so daß sich auch noch für das superschwere Th2 179+ hächste Lösungsgenauigkeiten mit moderatem Computer Aufwand ergaben, und zu zwei weiteren interessanten Veröffentlichungen führten (Publikationsliste). Trotz der damit bereits ermöglichten sehr viel effizienteren relativistischen Berechnung von Molekülen und Clustern blieben diese Rechnungen Größenordnungen aufwendiger als entsprechende nicht-relativistische. Diese behandeln das tatsächliche (relativitische) Verhalten elektronischer Systeme nur näherungsweise richtig, um so besser jedoch, je leichter die beteiligten Atome sind (kleine Kernladungszahl Z). Deshalb habe ich nach einem neuen Formalismus gesucht, der dem möglichst gut Rechnung trägt und trotzdem die Physik richtig relativistisch beschreibt. Dies gelingt durch ein 2-Spinor basierendes Minimax Prinzip: Systeme mit leichten Atomen sind voll relativistisch nunmehr nahezu ähnlich effizient beschrieben wie nicht-relativistisch, was natürlich große Hoffnungen für genaue (d.h. relativistische) Berechnungen weckt. Es ergab sich eine erste grundlegende Veröffentlichung (Publikationsliste). Die Genauigkeit in stark relativistischen Systemen wie Th2 179+ ist ähnlich oder leicht besser als in 4-Spinor Dirac-Formulierung. Die Vorteile der neuen Formulierung gehen aber entscheidend weiter: A. Die neue Minimax Formulierung der Dirac-Gl. ist frei von spuriosen Zuständen und hat keine positronischen Kontaminationen. B. Der Aufwand ist weit reduziert, da nur ein 1/3 der Matrix Elemente gegenüber 4-Spinor noch zu berechnen ist, und alle Matrixdimensionen Faktor 2 kleiner sind. C. Numerisch verhält sich die neue Formulierung ähnlilch gut wie die nichtrelativistische Schrödinger Gleichung (Obwohl es eine exakte Formulierung und keine Näherung der Dirac-Gl. ist), und hat damit bessere Konvergenzeigenschaften als 4-Spinor. Insbesondere die Fehlerwichtung (singulärer und glatter Anteil) ist in 2-Spinor anders, und diese zeigt die guten Extrapolationseigenschaften wie bei der nichtrelativistischen Schrödinger Gleichung. Die Ausweitung des Anwendungsbereichs von (relativistischen) 2-Spinor ist bereits in FEM Dirac-Fock-Slater, mit zwei Beispielen CO und N2, erfolgreich gemacht. Weitere Erweiterungen sind nahezu möglich. Siehe Minmax LCAO Nährung.
Resumo:
Im Rahmen der Dichtefunktionaltheorie wurden Orbitalfunktionale wie z.B. B3LYP entwickelt. Diese lassen sich mit der „optimized effective potential“ – Methode selbstkonsistent auswerten. Während sie früher nur im 1D-Fall genau berechnet werden konnte, entwickelten Kümmel und Perdew eine Methode, bei der das OEP-Problem unter Verwendung einer Differentialgleichung selbstkonsistent gelöst werden kann. In dieser Arbeit wird ein Finite-Elemente-Mehrgitter-Verfahren verwendet, um die entstehenden Gleichungen zu lösen und damit Energien, Dichten und Ionisationsenergien für Atome und zweiatomige Moleküle zu berechnen. Als Orbitalfunktional wird dabei der „exakte Austausch“ verwendet; das Programm ist aber leicht auf jedes beliebige Funktional erweiterbar. Für das Be-Atom ließ sich mit 8.Ordnung –FEM die Gesamtenergien etwa um 2 Größenordnungen genauer berechnen als der Finite-Differenzen-Code von Makmal et al. Für die Eigenwerte und die Eigenschaften der Atome N und Ne wurde die Genauigkeit anderer numerischer Methoden erreicht. Die Rechenzeit wuchs erwartungsgemäß linear mit der Punktzahl. Trotz recht langsamer scf-Konvergenz wurden für das Molekül LiH Genauigkeiten wie bei FD und bei HF um 2-3 Größenordnungen bessere als mit Basismethoden erzielt. Damit zeigt sich, dass auf diese Weise benchmark-Rechnungen durchgeführt werden können. Diese dürften wegen der schnellen Konvergenz über der Punktzahl und dem geringen Zeitaufwand auch auf schwerere Systeme ausweitbar sein.
Resumo:
Vorliegende Arbeit stellt eine am Lehrstuhl für Fördertechnik Materialfluss Logistik der Technischen Universität München entwickelte Modellierungsmethode vor, die eine Abbildung von Finite-Elemente-Modellen als kinematische Strukturen ermöglicht. Dabei besteht das Gesamt¬modell aus einer Reihe einzelner FE-Teilmodelle, die durch Gelenke miteinander verbunden sind. Durch das Verändern weniger Parameter kann die räumliche Anordnung der Teilmodelle zuein¬ander verändert werden. Somit lassen sich die unterschiedlichen Betriebszustände der realen Maschine durch ein einziges Modell abbilden, wodurch der Aufwand für die Modellierung, Berech¬nung und Auswertung derartiger Systeme erheblich reduziert werden kann.
Resumo:
Im Werkstoff thermisch induzierte chemische und physikalische Vorgänge bedingen während des Ofenprozesses beim IMLS-Verfahren ein instationäres plastisches Dehnungsverhalten, das die Form- und Maßgenauigkeit von Bauteilen negativ beeinflusst. Lineare oder funktionsbasierte Skalierungsfaktoren reichen bei komplexen Geometrieelementen nicht aus, um eine hohe Maßgenauigkeit aufgrund des transienten Verzugsverhaltens zu realisieren. Aus diesem Grund wird eine durchgängige Lösung auf Basis der Finite-Elemente-Methode (FEM) zur Berechnung des Strukturverhaltens vorgestellt. Die entwickelte numerische Prozesskette basiert auf der Ermittlung von Dilatometermessungen, die in reaktionskinetische Materialmodelle integriert und anschließend mit der Simulation gekoppelt werden. Dadurch kann das Verzugsverhalten in den Phasen Festphasensintern, Infiltration und Flüssigphasensintern während des Ofenprozesses mit hinreichender Genauigkeit berechnet werden.
Resumo:
Verbindungen stellen die Schwachstelle in einem Fördergurt dar, da dort die auftretenden Zugkräfte ausschließlich vom Zwischengummi übertragen werden. Prüfungen von Fördergurtverbindungen sind zeitaufwendig und kostenintensiv. Die Messung der Spannungen im Zwischengummi der Verbindung ist bei dieser Prüfung nur unter erheblichem Aufwand zu realisieren. Aus diesen Gründen wurde am Institut für Transport- und Automatisierungstechnik in Zusammenarbeit mit der Firma Fenner Dunlop Americas ein FE-Modell zur Auslegung und Optimierung von Stahlseil-Fördergurtverbindungen entwickelt.
Resumo:
Altersbedingte Osteoporose erhöht des Frakturrisiko. Übliche Diagnoseverfahren basieren auf DXA. Leider sind diese ungenau und erklären oft nicht die Effekte von Behandlungen. Eine neue Methode zur Bestimmung der Knochenfestigkeit beginnt derzeit, sich zu etablieren – die Finite-Elemente-Methode (FEM). Diese universelle, im Bereich der Technik weit verbreitete, Methode erlaubt es, die Diagnose und den Behandlungserfolg besser vorauszusagen als DXA. CT-basierende FE-Modelle sind stark von der Bildauflösung abhängig. In diesem Überblicksartikel werden drei unterschiedliche Modelltypen (μCT, HR-pQCT, QCT) vorgestellt und die Ergebnisse von densitometrischen und FE-Analysen verglichen. Dabei waren die FE-Ergebnisse den densitometrischen immer überlegen. Darüber hinaus erlaubt die FEM die Angabe eines biomechanischen Frakturrisikos. Dieser Vorteil der FE-Methode muss jedoch im Licht der höheren Röntgendosen und Betriebskosten der CT-Bildgebung betrachtet werden. Zukünftig wird die FE-Methode klinisch eine weite Verbreitung finden – die Frage ist nur wann und wie!
Resumo:
Diese Arbeit umfaßt das elektromechanische Design und die Designoptimierung von weit durchstimmbaren optischen multimembranbasierten Bauelementen, mit vertikal orientierten Kavitäten, basierend auf der Finiten Element Methode (FEM). Ein multimembran InP/Luft Fabry-Pérot optischer Filter wird dargestellt und umfassend analysiert. In dieser Arbeit wird ein systematisches strukturelles Designverfahren dargestellt. Genaue analytische elektromechanischer Modelle für die Bauelemente sind abgeleitet worden. Diese können unschätzbare Werkzeuge sein, um am Anfang der Designphase schnell einen klaren Einblick zur Verfügung zu stellen. Mittels des FEM Programms ist der durch die nicht-lineare Verspannung hervorgerufene versteifende Effekt nachgeforscht und sein Effekt auf die Verlängerung der mechanischen Durchstimmungsstrecke der Bauelemente demonstriert worden. Interessant war auch die Beobachtung, dass die normierte Relation zwischen Ablenkung und Spannung ein unveränderliches Profil hat. Die Deformation der Membranflächen der in dieser Arbeit dargestellten Bauelementformen erwies sich als ein unerwünschter, jedoch manchmal unvermeidbarer Effekt. Es zeigt sich aber, dass die Wahl der Größe der strukturellen Dimensionen den Grad der Membrandeformation im Falle der Aktuation beeinflusst. Diese Arbeit stellt ein elektromechanisches in FEMLAB implementierte quasi-3D Modell, das allgemein für die Modellierung dünner Strukturen angewendet werden kann, dar; und zwar indem man diese als 2D-Objekte betrachtet und die dritte Dimension als eine konstante Größe (z.B. die Schichtdicke) oder eine Größe, welche eine mathematische Funktion ist, annimmt. Diese Annahme verringert drastisch die Berechnungszeit sowie den erforderlichen Arbeitsspeicherbedarf. Weiter ist es für die Nachforschung des Effekts der Skalierung der durchstimmbaren Bauelemente verwendet worden. Eine neuartige Skalierungstechnik wurde abgeleitet und verwendet. Die Ergebnisse belegen, dass das daraus resultierende, skalierte Bauelement fast genau die gleiche mechanische Durchstimmung wie das unskalierte zeigt. Die Einbeziehung des Einflusses von axialen Verspannungen und Gradientenverspannungen in die Berechnungen erforderte die Änderung der Standardimplementierung des 3D Mechanikberechnungsmodus, der mit der benutzten FEM Software geliefert wurde. Die Ergebnisse dieser Studie zeigen einen großen Einfluss der Verspannung auf die Durchstimmungseigenschaften der untersuchten Bauelemente. Ferner stimmten die Ergebnisse der theoretischen Modellrechnung mit den experimentellen Resultaten sehr gut überein.
Resumo:
Es wird dargestellt, auf welche Weise man den Einfluss von Steifigkeitsänderungen auf Weg- oder Kraftgrößen bestimmen kann. Berücksichtigt werden Steifigkeitsänderungen eines Punktlagers, z.B. an einem Durchlaufträger und Steifigkeitsänderungen in einem bestimmten Bereich, z.B. die Lagerung einer Platte auf Wänden. Darüberhinaus wird auch der komplette Ausfall eines Punktlagers oder einer Wand bei der Herleitung berücksichtigt. Außerdem wird dargestellt, wie man Dehn- oder Biegesteifigkeitsänderungen in einzelnen Stäben, Balken und Bereichen einer Platte oder Scheibe berücksichtigen kann. Auch für den Ausfall eines Stabs in einem ebenen Fachwerk oder eines Balkens in einem Rahmentragwerk werden Formeln hergeleitet, mit denen man die Änderung einer Punktgröße für diesen Fall ermitteln kann. Die hergeleiteten Formeln basieren auf der schwachen Formulierung, die mittels partieller Integration aus der Differential- gleichung hervorgeht. Man betrachtet den Unterschied der inneren Energie eines ungeschwächten Systems 1 und eines geschwächten Systems 2 und setzt anstelle der virtuellen Verrückung die Einflussfunktion für die gesuchte Weg- oder Kraftgröße im System 1 ein. Das Ergebnis der Herleitung ist eine Gleichung, mit der man Steifigkeitsänderungen in Tragwerken und deren Einfluss auf Punkt- größen berücksichtigen kann.
Resumo:
Die vorliegende Arbeit stellt die erforderlichen theoretischen Zusammenhänge zur Berechnung von rotierenden elastischen Strukturen wie etwa Turbinen- und Verdichterschaufeln, Laufräder, Scheiben etc. zusammen und zeigt die Entwicklung eines entsprechenden FEM-Programm-Systems. Es ermöglicht die Berechnung der Eigenfrequenzen und Eigenformen von Einzelstrukturen und rotations-periodischen Strukturen in Abhängigkeit von der Drehfrequenz unter Einbeziehung aller wesentlichen Effekte. Weiterhin ist es möglich für einen beliebigen durch ein Polygon angenäherten Drehzahl-Zeit-Verlauf die erzwungenen Schwingungen und daraus resultierend die Spannungsverläufe über der Zeit zu berechnen. Hierauf aufbauend können die Lebensdauer der Struktur abgeschätzt und Parameterstudien durchgeführt werden.
Resumo:
Die vorliegende Arbeit befasst sich mit den Fehlern, die bei der Berechnung von Tragstrukturen auftreten können, dem Diskretisierungs- und dem Modellfehler. Ein zentrales Werkzeug für die Betrachtung des lokalen Fehlers in einer FE-Berechnung sind die Greenschen Funktionen, die auch in anderen Bereichen der Statik, wie man zeigen kann, eine tragende Rolle spielen. Um den richtigen Einsatz der Greenschen Funktion mit der FE-Technik sicherzustellen, werden deren Eigenschaften und die konsistente Generierung aufgezeigt. Mit dem vorgestellten Verfahren, der Lagrange-Methode, wird es möglich auch für nichtlineare Probleme eine Greensche Funktion zu ermitteln. Eine logische Konsequenz aus diesen Betrachtungen ist die Verbesserung der Einflussfunktion durch Verwendung von Grundlösungen. Die Greensche Funktion wird dabei in die Grundlösung und einen regulären Anteil, welcher mittels FE-Technik bestimmt wird, aufgespalten. Mit dieser Methode, hier angewandt auf die Kirchhoff-Platte, erhält man deutlich genauere Ergebnisse als mit der FE-Methode bei einem vergleichbaren Rechenaufwand, wie die numerischen Untersuchungen zeigen. Die Lagrange-Methode bietet einen generellen Zugang zur zweiten Fehlerart, dem Modellfehler, und kann für lineare und nichtlineare Probleme angewandt werden. Auch hierbei übernimmt die Greensche Funktion wieder eine tragende Rolle, um die Auswirkungen von Parameteränderungen auf ausgewählte Zielgrößen betrachten zu können.
Resumo:
To study the behaviour of beam-to-column composite connection more sophisticated finite element models is required, since component model has some severe limitations. In this research a generic finite element model for composite beam-to-column joint with welded connections is developed using current state of the art local modelling. Applying mechanically consistent scaling method, it can provide the constitutive relationship for a plane rectangular macro element with beam-type boundaries. Then, this defined macro element, which preserves local behaviour and allows for the transfer of five independent states between local and global models, can be implemented in high-accuracy frame analysis with the possibility of limit state checks. In order that macro element for scaling method can be used in practical manner, a generic geometry program as a new idea proposed in this study is also developed for this finite element model. With generic programming a set of global geometric variables can be input to generate a specific instance of the connection without much effort. The proposed finite element model generated by this generic programming is validated against testing results from University of Kaiserslautern. Finally, two illustrative examples for applying this macro element approach are presented. In the first example how to obtain the constitutive relationships of macro element is demonstrated. With certain assumptions for typical composite frame the constitutive relationships can be represented by bilinear laws for the macro bending and shear states that are then coupled by a two-dimensional surface law with yield and failure surfaces. In second example a scaling concept that combines sophisticated local models with a frame analysis using a macro element approach is presented as a practical application of this numerical model.