999 resultados para Film Dissolution
Protective Iron Carbonate Films—Part 2: Chemical Removal by Dissolution in Single-Phase Aqueous Flow
Resumo:
Rainfastness is the ability of agrochemical deposits to resist wash-off by rain and other related environmental phenomena. This work reports laboratory-scale and raintower studies of the rainfastness of fluorescently labeled poly(vinyl alcohol) (PVA) using fluorescent microscopy combined with image analysis. Samples of hydrolyzed PVA exhibit improved rainfastness over a threshold molecular weight, which correlates with PVA film dissolution, swelling, and crystalline properties. It was also established that the rainfastness of PVA scaled with the molecular weight over this threshold. These PVA samples were further characterized in order to determine the effect of the crystallinity on rainfastness. The quantification of rainfastness is of great interest to the field of agrochemical formulation development in order to improve the efficacy of pesticides and their adjuvants.
Resumo:
In the present study, films based on linter cellulose and chitosan were prepared using an aqueous solution of sodium hydroxide (NaOH)/thiourea as the solvent system. The dissolution process of cellulose and chitosan in NaOH/thiourea aqueous solution was followed by the partial chain depolymerization of both biopolymers, which facilitates their solubilization. Biobased films with different chitosan/cellulose ratios were then elaborated by a casting method and subsequent solvent evaporation. They were characterized by X-ray analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), thermal analysis, and tests related to tensile strength and biodegradation properties. The SEM images of the biofilms with 50/50 and 60/40 ratio of chitosan/cellulose showed surfaces more wrinkled than the others. The AFM images indicated that higher the content of chitosan in the biobased composite film, higher is the average roughness value. It was inferred through thermal analysis that the thermal stability was affected by the presence of chitosan in the films; the initial temperature of decomposition was shifted to lower levels in the presence of chitosan. Results from the tests for tensile strength indicated that the blending of cellulose and chitosan improved the mechanical properties of the films and that an increase in chitosan content led to production of films with higher tensile strength and percentage of elongation. The degradation study in a simulated soil showed that the higher the crystallinity, the lower is the biodegradation rate.
Resumo:
The influence of chloride on the electrodeposition of lead films and their dissolution in anodic stripping voltammetric experiments was examined. Gold substrates were plated with lead films, and mass changes were monitored by using the electrochemical quartz crystal microbalance with dissipation factor (EQCM-D). The results showed that the amount of electrodeposited lead is slightly dependent on the chloride concentration. The charge/mass ratio data indicated the presence of Pb(I) and Pb(II) as a result of film dissolution, and the precipitation and deposition of PbCl2 onto the electrode surface. Scanning electron microscopy images revealed that the morphology of the lead film was strongly influenced by chloride present in the plating solution and that much rougher films were obtained in comparison with those obtained in the absence of chloride. The rate of the anodic dissolution was higher for lead films with higher surface areas, which lead to an increase in their stripping voltammetric currents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
C-60 films, prepared by solution casting, were studied by means of in situ probe beam deflection (PBD) combined with cyclic voltammetry (CV). PBD is a powerful technique for investigation of phenomena at the electrode/electrolyte interface in acetonitrile with quaternary ammonium and alkali metal salts as supporting electrolytes. In tetra-n-butylammonium (TBA(+)) salt solution, a stable CV can be obtained during the first two reduction/reoxidation waves. On reduction, injection of cations to maintain charge balance and dissolution of small amount of C-60(-) (TEA(+)) and/or C-60(2-) (TBA(+))(2) are detected. During the reoxidation process ejection of cations and injection of anions occur simultaneously, especially for the second reoxidation wave. In the case where TBABr is the supporting electrolyte, the accompanied behavior is more complicated than in TBABF(4), TBAClO(4), and TBAPF(6) solutions. A small pair of prewaves in CV are proposed due to oxidation/reduction of C-60 domains but not dissolution/redeposition of C-60 film. Extending the potential scan range to the third reduction wave, no apparent corresponding reoxidation wave is related to the third reduction wave, the electroactivity of the film disappears rapidly and dissolution of C-60 film is observed. In tetraethylammonium (TEA(+)) and NAClO(4) solutions, the electrochemistry of the C-60 films is unstable, and potential scans lead to dissolution of flaking of the film.
Resumo:
The dissolution of thin film under-bump-metallization (UBM) by molten solder has been one of the most serious processing problems in electronic packaging technology. Due to a higher melting temperature and a greater Sn content, a molten lead-free solder such as eutectic SnAg has a faster dissolution rate of thin film UBM than the eutectic SnPb. The work presented in this paper focuses on the role of 0.5 wt % Cu in the base Sn–3.5%Ag solder to reduce the dissolution of the Cu bond pad in ball grid array applications. We found that after 0.5 wt % Cu addition, the rate of dissolution of Cu in the molten Sn–3.5%Ag solder slows down dramatically. Systematic experimental work was carried out to understand the dissolution behavior of Cu by the molten Sn–3.5%Ag and Sn–3.5%Ag–0.5%Cu solders at 230–250 °C, for different time periods ranging from 1 to 10 min. From the curves of consumed Cu thickness, it was concluded that 0.5 wt % Cu addition actually reduces the concentration gradient at the Cu metallization/molten solder interface which reduces the driving force of dissolution. During the dissolution, excess Cu was found to precipitate out due to heterogeneous nucleation and growth of Cu6Sn5 at the solder melt/oxide interface. In turn, more Cu can be dissolved again. This process continues with time and leads to more dissolution of Cu from the bond pad than the amount expected from the solubility limit, but it occurs at a slower rate for the molten Sn–3.5%Ag–0.5%Cu solder. © 2003 American Institute of Physics.
Resumo:
Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.
Resumo:
A sensitive method based on square wave voltammetry is described for the quantitative determination of elemental sulfur, disulfide and mercaptan in gasoline using a mercury film electrode. These sulfur compounds can be quantified by direct dissolution of gasoline in a supporting electrolyte followed by subsequent voltammetric measurement. The supporting electrolyte is 1.4 mol L-1 sodium acetate and No acetic acid in methanol. Chemical and optimum operational conditions for the formation of the mercury film were analyzed in this study. The values obtained were a 4.3 mu m thickness for the mercury film, a 1000 rpm rotation frequency, -0.9 V applied potential and 600 s depositing time. Voltammetric measurements were obtained using square wave voltammetry with detection limits of the 3.0 x 10(-9), 1.6 x 10(-7) and 4.9 x 10(-7) mol L-1 for elemental sulfur, disulfide and mercaptan, respectively. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A new, versatile, and simple method for quantitative analysis of zinc, copper, lead, and cadmium in fuel ethanol by anodic stripping voltammetry is described. These metals can be quantified by direct dissolution of fuel ethanol in water and subsequent voltammetric measurement after the accumulation step. A maximum limit of 20% (v/v) ethanol in water solution was obtained for voltammetric measurements without loss of sensitivity for metal species. Chemical and operational optimum conditions were analyzed in this study; the values obtained were pH 2.9, a 4.7-mum thickness mercury film, a 1,000-rpm rotation frequency of the working electrode, and a 600-s pre-concentration time. Voltammetric measurements were obtained using linear scan (LSV), differential pulse (DPV), and square wave (SWV) modes and detection limits were in the range 10(-9)-10(-8) mol L-1 for these metal species. The proposed method was compared with a traditional analytical technique, flame atomic absorption spectrometry (FAAS), for quantification of these metal species in commercial fuel ethanol samples.
Resumo:
Objectives: To evaluate the anti-erosive potential of solutions containing sodium fluoride (NaF, 225 ppm F) and different film-forming agents.Methods: In Phase 1, hydroxyapatite crystals were pre-treated with solutions containing NaF (F), linear sodium polyphosphate (LPP), sodium pyrophosphate tetrabasic (PP), sodium tripolyphosphate (STP), sodium caseinate (SC), bovine serum albumin (BSA), stannous chloride (Sn) and some combinations thereof. Deionized water was the control (C). The pH-stat method was used to evaluate hydroxyapatite dissolution. In Phase 2, the most effective solutions were tested in two independent experiments. Both consisted of an erosion-remineralization cycling model using enamel and dentine specimens with three solution treatments per day. In Phase 2a, the challenge was performed with 0.3% citric acid (pH = 3.8). In Phase 2b, 1% citric acid (pH = 2.4) was used. Hard tissue surface loss was determined profilometrically. Data were analyzed with two-way ANOVA and Tukey tests.Results: In Phase 1, F, LPP, Sn and some of their combinations caused the greatest reduction in hydroxyapatite dissolution. In Phase 2a, C showed the highest enamel loss, followed by LPP. There were no differences between all other groups. In Phase 2b: (F + LPP + Sn) < (F + LPP) = (F + Sn) < (F) = (LPP + Sn) < (LPP) < (Sn) < C. For dentine, in both experiments, only the fluoride-containing groups showed lower surface loss than C, except for LPP + Sn in 2a.Conclusions: F, Sn, LPP reduced enamel erosion, this effect was enhanced by their combination under highly erosive conditions. For dentine, the F-containing groups showed similar protective effect.Clinical significance: The addition of LPP and/or Sn can improve the fluoride solution protection against erosion of enamel but not of dentine. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The aims were to investigate the effect of monoalkyl phosphates (MAPs) and fluoride on dissolution rate of native and saliva-coated hydroxyapatite (HA). Fluoride at 300 mg/l (as NaF) inhibited dissolution of native HA by 12%, while potassium and sodium dodecyl phosphates (PDP, SDP), at 0.1% or higher, inhibited dissolution by 26-34%. MAPs, but not fluoride, also showed persistence of action. MAPs at 0.5% and fluoride at 300 mg/l were then tested separately against HA pre-treated with human saliva for 2 or 18 h. Agents were applied with brushing to half the specimens, and without brushing to the other half. In control (water-treated) specimens, pre-treatment of HA with human saliva reduced dissolution rate on average by 41% (2 h) and 63% (18 h). Brushing did not have a statistically significant effect on dissolution rate of saliva-coated specimens. In brushed specimens, fluoride significantly increased the inhibition due to 2- or 18-hour saliva pre-treatment. It is hypothesised that brushing partially removes the salivary film and allows KOH-soluble calcium fluoride formation at the surfaces of HA particles. Inhibition was reduced by PDP in 2-hour/non-brushed specimens and in 18-hour/brushed specimens. PDP did not affect dissolution rates in the remaining groups and SDP did not affect dissolution rate in any group. Possible reasons for these variable results are discussed. The experiments show that pre-treatment with saliva can significantly modify results of tests on potential anti-erosive agents and it is recommended that saliva pre-treatment should be a routine part of testing such agents.
Resumo:
Objectives. Standard pharmaceutical capsules are designed to dissolve in the acidic environment of the stomach releasing the encapsulated contents for absorption. When release is required further along the gastrointestinal tract capsules can be coated with acid insoluble polymers to enable passage through the stomach and dissolution in the intestine. This paper describes formulations that have the potential to be used to produce two-piece hard capsules for post-gastric delivery without the requirement of an exterior coat. Methods. The formulation uses three polysaccharides: sodium alginate, hypromellose and gellan gum to provide acid insolubility and the ability to form capsules using standard industrial equipment. Key findings. The rheological profile, on cooling, of the base material, water content and thickness of the films were shown to be comparable with those of commercial capsules. The capsules remained intact for 2 h in 100 mm HCl at pH 1.2, and within 5 min of being removed from the acid and submerged in phosphate-buffered saline at pH 6.8 were ruptured. Conclusions. Selected formulations from this study have potential for use as delayed release capsules.
Resumo:
The observation of spontaneous oscillations in current during the anodization of InP in relatively high concentrations of KOH electrolytes is reported. Oscillations were observed under potential sweep and constant potential conditions. Well-defined oscillations are observed during linear potential sweeps of InP in 5 mol dm-3 KOH to potentials above ∼1.7 V (SCE) at scan rates in the range of 50 to 500 mV s-1. The oscillations observed exhibit an asymmetrical current versus potential profile, and the charge per cycle was found to increase linearly with potential. More complex oscillatory behavior was observed under constant potential conditions. Periodic damped oscillations are observed in high concentrations of electrolyte whereas undamped sinusoidal oscillations are observed in relatively lower concentrations. In both cases, the anodization of InP results in porous InP formation, and the current in the oscillatory region corresponds to the cyclical effective area changes due to pitting dissolution of the InP surface with the coincidental growth of a thick porous In2O3 film.
Resumo:
Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hotembossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes for 1x and 1.5x scale devices respectively, were found to be clinically relevant with respect to the reported array insertion times during surgical implantation. Eventually, the stiffener-embedded arrays would not need to be permanently attached to current insertion tools which are left behind after implantation and congest the cochlear scala tympani chamber. Finally, a simulation-based approach for accelerated failure analysis of PLA stiffeners and characterization of PVP-b-PDLLA copolymer adhesive has been explored. The residual functional life of embedded PLA stiffeners exposed to body-fluid and thereby subjected to degradation and erosion has been estimated by simulating PLA stiffeners with different parylene coating failure types and different PLA types for a given parylene coating failure type. For characterizing the PVP-b-PDLLA copolymer adhesive, several formulations of the copolymer adhesive were simulated and compared based on the insertion tool detachment times that were predicted from the dissolution, degradation, and erosion behavior of the simulated adhesive formulations. Results indicate that the simulation-based approaches could be used to reduce the total number of time consuming and expensive in-vitro tests that must be conducted.