857 resultados para Fiber reinforced plastics - Mechanical properties
Resumo:
The effects of acid treatment, vapor grown carbon fiber (VGCF) interlayer and the angle, i.e., 0° and 90°, between the rolling stripes of an aluminum (Al) plate and the fiber direction of glass fiber reinforced plastics (GFRP) on the mode II interlaminar mechanical properties of GFRP/Al laminates were investigated. The experimental results of an end notched flexure test demonstrate that the acid treatment and the proper addition of VGCF can effectively improve the critical load and mode II fracture toughness of GFRP/Al laminates. The specimens with acid treatment and 10 g m−2 VGCF addition possess the highest mode II fracture toughness, i.e., 269% and 385% increases in the 0° and 90° specimens, respectively compared to those corresponding pristine ones. Due to the induced anisotropy by the rolling stripes on the aluminum plate, the 90° specimens possess 15.3%–73.6% higher mode II fracture toughness compared to the 0° specimens. The improvement mechanisms were explored by the observation of crack propagation path and fracture surface with optical, laser scanning and scanning electron microscopies. Moreover, finite element analyses were carried out based on the cohesive zone model to verify the experimental fracture toughness and to predict the interface shear strength between the aluminum plates and GFRP laminates.
Resumo:
Abrasion by glass fibers during injection molding of fiber reinforced plastics raises new challenges to the wear performance of the molds. In the last few decades, a large number of PVD and CVD coatings have been developed with the aim of minimizing abrasion problems. In this work, two different coatings were tested in order to increase the wear resistance of the surface of a mold used for glass fiber reinforced plastics: TiAlSiN and CrN/CrCN/DLC. TiAlSiN was deposited as a graded monolayer coating while CrN/CrCN/DLC was a nanostructured coating consisting of three distinct layers. Both coatings were produced by PVD unbalanced magnetron sputtering and were characterized using scanning electron microscopy (SEM) provided with energy dispersive spectroscopy (EDS), atomic force microscopy (AFM), micro hardness (MH) and scratch test analysis. Coating morphology, thickness, roughness, chemical composition and structure, hardness and adhesion to the substrate were investigated. Wear resistance was characterized through industrial tests with coated samples and an uncoated reference sample inserted in a feed channel of a plastic injection mold working with 30 wt.% glass fiber reinforced polypropylene. Results after 45,000 injection cycles indicate that the wear resistance of the mold was increased by a factor of 25 and 58, by the TiAlSiN and CrN/CrCN/DLC coatings, respectively, over the uncoated mold steel.
Resumo:
The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The electrical resistivity of carbon fiber reinforced cement composites (CFRCCs) has been widely studied, because of their utility as multifunctional materials. The percolation phenomenon has also been reported and modeled when the electrical behavior of those materials had to be characterized. Amongst the multiple applications of multifunctional cement composites the ability of a CFRCC to act as a strain sensor is attractive. This paper provides experimental data relating self-sensing function and percolation threshold, and studying the effect of fiber aspect ratio on both phenomena. Higher fiber slenderness permitted percolation at lower carbon fiber addition, affected mechanical properties and improved strain-sensing sensitivity of CFRCC, which was also improved if percolation had not been achieved.
Resumo:
An eigenfunction expansion-variational method based on a unit cell is developed to deal with the steady-state heat conduction problem of doubly-periodic fiber reinforced composites with interfacial thermal contact resistance or coating. The numerical results show a rapid convergence of the present method. The present solution provides a unified first-order approximation formula of the effective thermal conductivity for different interfacial characteristics and fiber distributions. A comparison with the present high-order results, available experimental data and micromechanical estimations demonstrates that the first-order approximation formula is a good engineering closed-form formula. An engineering equivalent parameter reflecting the overall influence of the thermal conductivities of the matrix and fibers and the interfacial characteristic on the effective thermal conductivity, is found. The equivalent parameter can greatly simplify the complicated relation of the effective thermal conductivity to the internal structure of a composite. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Treated sisal fibers were used as reinforcement of polypropylene (PP) composites, with maleic anhydride-grafted PP (MAPP) as coupling agent. The composites were made by melting processing of PP with the fiber in a heated roller followed by multiple extrusions in a single-screw extruder. Injection molded specimens were produced for the characterization of the material. In order to improve the adhesion between fiber and matrix and to eliminate odorous substances, sisal fibers were treated with boiling water and with NaOH solutions at 3 and 10 wt.%. The mechanical properties of the composites were assessed by tensile, bend and impact tests. Additionally, the morphology of the composites and the adhesion at he fiber-matrix interface were analyzed by SEM. The fiber treatment led to very light and odorless materials, with yields of 95, 74 and 62 wt.% for treatments with hot water, 3 and 10 wt.% soda solution respectively. Fiber treatment caused an appreciable change in fiber characteristics, yet the mechanical properties under tensile and flexural tests were not influenced by that treatment. Only the impact strength increased in the composites with alkali-treated sisal fibers.
Resumo:
By taking the advantage of the excellent mechanical properties and high specific surface area of graphene oxide (GO) sheets, we develop a simple and effective strategy to improve the interlaminar mechanical properties of carbon fiber reinforced plastic (CFRP) laminates. With the incorporation of graphene oxide reinforced epoxy interleaf into the interface of CFRP laminates, the Mode-I fracture toughness and resistance were greatly increased. The experimental results of double cantilever beam (DCB) tests demonstrated that, with 2 g/m2 addition of GO, the Mode-I fracture toughness and resistance of the specimen increase by 170.8% and 108.0%, respectively, compared to those of the plain specimen. The improvement mechanisms were investigated by the observation of fracture surface with scanning electron microscopies. Moreover, finite element analyses were performed based on the cohesive zone model to verify the experimental fracture toughness and to predict the interfacial tensile strength of CFRP laminates.
Resumo:
In this work, an attempt is made to induce porosity of varied levels in carbon fiber reinforced epoxy based polymer composite laminates fabricated using prepregs by varying the fabrication parameters such as applied vacuum, autoclave pressure and curing temperature. Different NDE tools have been utilized to evaluate the porosity content and correlate with measurable parameters of different NDE techniques. Primarily, ultrasonic imaging and real time digital X-ray imaging have been tried to obtain a measurable parameter which can represent or reflect the amount of porosity contained in the composite laminate. Also, effect of varied porosity content on mechanical properties of the CFRP composite materials is investigated through a series of experimental investigations. The outcome of the experimental approach has yielded interesting and encouraging trend as a first step towards developing an NDE tool for quantification of effect of varied porosity in the polymer composite materials.
Resumo:
Structural adhesive bonding is widely used to execute assemblies in automobile and aerospace structures. The quality and reliability of these bonded joints must be ensured during service. In this context non destructive evaluation of these bonded structures play an important role. Evaluation of adhesively bonded composite single lap shear joints has been attempted through experimental approach. Series of tests, non-destructive as well as destructive were performed on different sets of carbon fiber reinforced polymer (CFRP) composite lap joint specimens with varied bond quality. Details of the experimental investigations carried out and the outcome are presented in this paper.
Resumo:
A series of short-isora-fiber-reinforced natural rubber composites were prepared by the incorporation of fibers of different lengths (6, 10, and 14 mm) at 15 phr loading and at different concentrations (10, 20, 30, and 40 phr) with a 10 mm fiber length. Mixes were also prepared with 10 mm long fibers treated with a 5% NaOH solution. The vulcanization parameters, processability, and stress-strain properties of these composites were analyzed. Properties such as tensile strength, tear strength, and tensile modulus were found to be at maximum for composites containing longitudinally oriented fibers 10 mm in length. Mixes containing fiber loadings of 30 phr with bonding agent (resorcinol-formaldehyde [RF] resin) showed mechanical properties superior to all other composites. Scanning electron microscopy (SEM) studies were carried out to investigate the fiber surface morphology, fiber pullout, and fiber-rubber interface. SEM studies showed that the bonding between the fiber and rubber was improved with treated fibers and with the use of bonding agent.
Resumo:
Cure characteristics and mechanical properties of short nylon fiber reinforced acrylonitrile butadiene rubber-reclaimed rubber composites were studied. Minimum torque, (maximum-minimum) torque and cure rate increased with fiber concentration. Scorch time and cure time decreased by the addition of fibers. Properties like tensile strength, tear strength, elongation at break, abrasion loss and heat build up were studied in both orientations of fibers. Tensile and tear properties were enhanced by the addition of fibers and were higher in the longitudinal direction. Heat build up increased with fiber concentration and were higher in the longitudinal direction. Abrasion resistance was improved in presence of short fibers and was higher in the longitudinal direction. Resilience increased on the introduction of fibers. Compression set was higher for blends.
Resumo:
The cure characteristics and mechanical properties of short nylon fiber- styrene /whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/ WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/ PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.