909 resultados para Ferrita. Espinélio. Cobalto. Reação de combustão. Propriedades magnéticas
Resumo:
The ferrite composition Ni1 - xCoxFe2O4 (0 ≤ x ≤ 0.75) were obtained by the method of microwave assisted synthesis and had their structural and magnetic properties evaluated due to the effect of the substitution of Ni by Co. The compounds were prepared: according to the concept of chemical propellants and heated in the microwave oven with power 7000kw. The synthesized material was characterized by absorption spectroscopy in the infrared (FTIR), Xray diffraction (XRD) using the Rietveld refinement, specific surface area (BET) , scanning electron microscopy (SEM) with aid of energy dispersive analysis (EDS) and magnetic measurements (MAV). The results obtained from these techniques confirmed the feasibility of the method of synthesis employed to obtain the desired spinel structure, the ferrite, nickel ferrite as for nickel doped with cobalt. The results from XRD refinement ally showed the formation of secondary phases concerning stages α - Fe2O3, FeO, (FeCo)O e Ni0. On the other hand, there is an increase in crystallite size with the increase of cobalt in systems, resulting in an increased crystallinity. The results showed that the BET systems showed a reduction in specific surface area with the increase of cobalt and from the SEM, the formation of irregular porous blocks and that the concentration of cobalt decreased the agglomerative state of the system. The magnetic ferrites studied showed different characteristics according to the amount of dopant used, ranging from a very soft magnetic material (easy magnetization and demagnetization ) - for the system without cobalt - a magnetic material with a little stiffer behavior - for systems containing cobalt. The values of the coercive field increased with the increasing growth of cobalt, and the values of saturation magnetization and remanence increased up to x = 0,25 and then reduced. The different magnetic characteristics presented by the systems according to the amount of dopant used, allows the use of these materials as intermediates magnetic
Resumo:
Were synthesized spinel-type ferrites with general formula Ni0,8Mg0.2-xMxFe2O4, where M represents the doping Mn, Co or Mn + Co simultaneously, x ranges for the values 0.02, 0.05 and 0.1. The value of x was divided by 2 in cases where M equals Mn and Co conjugates. We used the citrate precursor method and heat treatment to obtain the phases at 1100°C. The materials were characterized by XRD, TGA/ DTGA, SEM, MAV and reflectivity measurements by the method of waveguide. Powders to 350°C/3.5 h were crystalline and nanosized. According to the results this temperature all powders have a percentage of ferrite phase over 90%. The composition had the addition of Mn and Co simultaneously showed a higher percentage of secondary phase NiO, 5.8%. The TGA/DTGA curves indicate that this sample reached phase (s) crystalline (s) at lowest temperatures. The X-ray diffractograms of the samples calcined at 350°C and 1100°C were treated with the Rietveld refinament technique. The powders calcined at 1100 °C/3h in air show to be 100% except spinel phase composition with 0.02 doping. The micrographs show clusters of particles with sizes smaller than 1 μm in calcination temperature of 1100°C which agreed with the result of Rietveld refinement. In the compositions doped with Mn were higher values of magnetization (45.90 and 53.20 Am2/kg), which did not cause high microwave absorption. The theoretical calculation of magnetization (MT) was consistent with the results, considering that there was agreement between the increase of magnetization experimental and theoretical. It was observed that there was the interrelation of the final effect of absorption with the thickness of MARE, the composition of ferrimagnetic materials and in particular the specific values of frequency. The analysis shows that the reflectivity increases in the concentration of cobalt increased the frequency range and also for absorption 10.17 GHz and 84%, respectively. The best result of chemical homogeneity and the value of 2.96 x 10-2 tesla coercive field were crucial for high performance ferrite absorber with 0.1 cobalt. The Cobalt has high magnetocrystalline anisotropy, it is associated with an increased coercive field, Hc. Therefore, this property improves the results of reflectivity of spinel ferrites
Resumo:
It was synthesized different Ni1-xMgxFe2O4 (0,2 ≤ x ≤ 0,7) compositions by use of citrate precursor method. Initially, the precursory citrates of iron, nickel and magnesium were mixed and homogenized. The stoichiometric compositions were calcined from 350°C to 1200°C at ambient atmosphere or in argon atmosphere. The calcined powders were characterized by XRD, TGA/DTG, FTIR, magnetic measures and reflectivity using the wave guide method. I was observed pure magnetic phase formation between 350°C and 500°C, with formation of ferrite and hematite after 600°C at ambient atmosphere. The calcined powder at argon atmosphere formed pure ferromagnetic phase at 1100°C and 1200°C. The Rietveld analyses calculated the cations level occupation and the crystallite size. The analyses obtained nanometric crystals (11-66 nm), that at 900°C/3h presents micrometric sizes (0,45 - 0,70 Om). The better magnetization results were 54 Am2/Kg for x= 0,2 composition, calcined at 350°C/3h and 30 min, and 55,6 Am2/Kg for x= 0,2 1200°C, calcined in argon. The hysteresis shows characteristics of soft magnetic material. Two magnetization processes were considered, superparamagnetism at low temperature and the magnetic domains formation at high temperatures. The materials presented absorption less or equal the 50 % in ranges specific frequency. As for the 2,0 and 3,0 thickness (in 11,0 - 11,8 GHz), the reflectivity of the x= 0,3, 0,5 and 0,4 compositions, all calcined at 900°C/3h showed agreement with MS and O. Various factors contribute for the final radiation absortion effect, such as, the particle size, the magnetization and the polymer characteristics in the MARE composition. The samples that presented better magnetization does not obtaining high radiation absorption. It is not clear the interrelaction between the magnetization and the radiation absorption in the strip of frequencies studied (8,2 - 12,4 GHz)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper reports on the effect of the substitution of Fe3+ for Cr3+ ions in the spinel lattice of the powders was investigated. Nickel ferrite powders with a NiFe2-xCrxO4 nominal composition (x = 0.0; 0.5; 1.0 and 1.5 mol of the chromium) were synthesized by combustion reaction using urea as fuel. The powders resulting were characterized by XRD, nitrogen adsorption by BET, SEM and Mössbauer spectroscopy (57Fe Mössbauer spectra). The results show that the substitution of the Fe3+ for Cr3+ions increased the crystalline degree of the phase, reduced the superficial area and consequently increased the particle size. The Mössbauer spectra of the samples also confirm the distribution of the particles size by the magnetic properties. Analyze of the spectra Mössbauer gives an estimate of the superparamagnetic and ferromagnetic particles behavior in each sample for several chromium concentrations.
Resumo:
O crescimento de lmes nos ferromagnéticos sobre uma superfícies vicinal induz uma anisotropia uniaxial que atua juntamente com a anisotropia magnetocrislanina. Neste estudo, lmes nos de Co foram depositados sobre Si(111) para investigar o papel dessa anisotropia nas propriedades magnéticas do lme. Os substratos foram preparados quimicamente via uma solução de NH4F e caracterizados via microscopia de força atômica. Os lmes, depositados via desbaste iônico, foram caracterizados estruturalmente via difratometria de raio-x e microscopia de tunelamento. As propriedades magnéticas foram determinadas via magnetometria a efeito Kerr magnetoóptico, onde observou-se a presen ça de uma anisotropia uniaxial dominante. Um modelo fenomelógico de reversão da magnetização via rotação coerente foi aplicado para ajustar as curvas de histerese, e as constantes de anisotropia uniaxial para cada espessura foram determinadas.
Resumo:
Perovskites oxides win importance by its properties and commercials applications, they have a high thermal stability, have conductive properties, electrical, catalytic, electro catalytic, optical and magnetic, and are thermally stable. Because of these properties, are being widely studied as carriers of oxygen in the process of power generation with CO2 capture. In this work, the base carrier system La1-xMexNiO3 (Me = Ca and Sr) were synthesized by the method via the combustion reaction assisted by microwave. were synthesized from the combustion reaction method by microwave process. This method control the synthesi`s conditions to obtain materials with specific characteristics. The carriers calcined at 800 ° C/2h were analyzed by thermal analysis (TG-DTA), to verify its thermal stability, X-ray diffraction (XRD) to verify the phase formation, with subsequent refinement by the Rietveld method, to quantify the percentage of phases formed, the surface area by BET method was determined, scanning electron microscopy (SEM) was obtained to evaluate the material morphology and temperature programmed reduction (TPR) was done to observe the metallic phase of the nickel. After all proposed characterization and analysis of their results can be inferred to these oxides, key features so that they can be applied as carriers for combustion reactions in chemical cycles. The final products showed perovskite-type structures K2NiF4 (main) and ABO3.
Resumo:
Orthoferrites AFeO3 (A = rare earth) are an important class of perovskite oxides that exhibit weak ferromagnetism. These materials find numerous applications as chemical sensors, cathodes for fuel cells and catalysis, which make them interesting from the standpoint of science and technology. Their structural, electrical and magnetic properties are dependent on many factors such as the preparation method, heat treatment conditions, chemical composition and replacement of cations in sites A and/or B. In this paper, LaFe1-xMnxO3 (0 ≤ x ≤ 1) orthoferrites-type was prepared by Pechini method and Microwave-assisted combustion reaction in order to evaluate the influence of synthesis route on the formation of oxide, as well as the effect of parcial replacement of iron by manganese and heat treatment on the magnetic properties. The precursor powders were calcined at 700°C, 900°C, 1100°C and 1300°C for 4 hours and they were characterized by the techniques: Thermogravimetric analysis (TGA), X ray diffraction (XRD), Refinement by Rietveld method, Scanning electron microscopy (SEM), Reduction temperature programmed (RTP) and Magnetic hysteresis measurements performed at room temperature. According to the XRD patterns, the formation of perovskite phase with orthorhombic structure was observed for the systems where 0 ≤ x ≤ 0.5 and rhombohedral for x = 1. The results also showed a decrease of lattice parameters with the parcial replacement of iron by manganese and consequently a reduction in cell volume. The hysteresis curves exhibited weak ferromagnetism for the systems prepared by both synthesis methods. However, a dependence of magnetization as a function of dopant content was observed for samples produced by Pechini method. As for the systems prepared by combustion reaction, it was found that the secondary phases exert a strong influence on the magnetic behavior
Resumo:
This thesis is part of research on new materials for catalysis and gas sensors more active, sensitive, selective. The aim of this thesis was to develop and characterize cobalt ferrite in different morphologies, in order to study their influence on the electrical response and the catalytic activity, and to hierarchize these grains for greater diffusivity of gas in the material. The powders were produced via hydrothermal and solvothermal, and were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, transmission electron microscopy (electron diffraction, highresolution simulations), and energy dispersive spectroscopy. The catalytic and electrical properties were tested in the presence of CO and NO2 gases, the latter in different concentrations (1-100 ppm) and at different temperatures (room temperature to 350 ° C). Nanooctahedra with an average size of 20 nm were obtained by hydrothermal route. It has been determined that the shape of the grains is mainly linked to the nature of the precipitating agent and the presence of OH ions in the reaction medium. By solvothermal method CoFe2O4 spherical powders were prepared with grain size of 8 and 20 nm. CoFe2O4 powders exhibit a strong response to small amounts of NO2 (10 ppm to 200 ° C). The nanooctahedra have greater sensitivity than the spherical grains of the same size, and have smaller response time and shorter recovery times. These results were confirmed by modeling the kinetics of response and recovery of the sensor. Initial tests of catalytic activity in the oxidation of CO between temperatures of 100 °C and 350 °C show that the size effect is predominant in relation the effect of the form with respect to the conversion of the reaction. The morphology of the grains influence the rate of reaction. A higher reaction rate is obtained in the presence of nanooctahedra. In order to improve the detection and catalytic properties of the material, we have developed a methodology for hierarchizing grains which involves the use of carbonbased templates.
Resumo:
Neste trabalho foram estudadas as propriedades magnéticas e estruturais de filmes ultrafinos de Fe, Co e Ni produzidos por eletrodeposição sobre substratos de Au(111). Os estágios iniciais de crescimento dos filmes foram estudados por técnicas de caracterização “in-situ”. Uma nova técnica de caracterização do estado magnético de filmes ultrafinos eletrodepositados (EC-AGFM) foi utilizada, mostrando-se uma poderosa ferramenta para o estudo das propriedades magnéticas dos filmes. Outras técnicas, como STM “in-situ”, PMOKE “in-situ”, EXAFS, XRD, RBS foram utilizadas. A análise dos dados revelaram resultados diferentes para os filmes de Fe e Co/Au(111), em comparação aos filmes de Ni/Au(111). Enquanto a anisotropia magnética perpendicular (PMA) foi observada para os filmes de Fe e Co/Au(111), não foi observada para os filmes de Ni/Au(111). Os resultados são interpretados em termos das contribuições para a anisotropia magnética dos filmes. No caso do níquel, a degradação de suas propriedades magnéticas são atribuídas à incorporação de hidrogênio durante a deposição. Os resultados das análises magnética e estrutural são correlacionados a fim de compreender o comportamento das propriedades observadas. Os resultados são comparados aos obtidos por técnicas em vácuo.
Resumo:
This work a studied the high energy milling effect in microstructure and magnetic properties of the WC-10wt.%Co composite. The composite powders were prepared by mechanical mixed and milled at 2 hours, 100 hours, 200 hours and 300 hours in planetary milling. After this process the composite were compacted in stainless steel die with cylindrical county of 10 mm of diameter, at pressure 200 Mpa and sintered in a resistive furnace in argon atmosphere at 1400 oC for 5 min. The sintered composite were cutted, inlaid, sandpapered, and polished. The microestrutural parameters of the composite was analyzed by X-ray diffraction, scanning electronic microscopy, optical microscopy, hardness, magnetic propriety and Rietveld method analyze. The results shows, with milling time increase the particle size decrease, it possibility minor temperature of sintering. The increase of milling time caused allotropic transformation in cobalt phase and cold welding between particles. The cold welding caused the formation of the particle composite. The X-ray diffraction pattern of composite powders shows the WC peaks intensity decrease with the milling time increase. The X-ray diffraction pattern of the composite sintered samples shows the other phases. The magnetic measurements detected a significant increase in the coercitive field and a decrease in the saturation magnetization with milling time increase. The increase coercitive field it was also verified with decrease grain size with milling time increase. For the composite powders the increase coercitive field it was verified with particle size reduction and saturation magnetization variation is relate with the variation of free cobalt. The Rietveld method analyze shows at milling time increase the mean crystalline size of WC, and Co-cfc phases in composite sintered sample are higher than in composite powders. The mean crystallite size of Co-hc phase in composite powders is higher than in composite sintered sample. The mean lattice strains of WC, Co-hc and Co-cfc phases in composite powders are higher than in composite sintered samples. The cells parameters of the composite powder decrease at milling time increase this effect came from the particle size reduction at milling time increase. In sintered composite the cells parameters is constant with milling time increase
Resumo:
Synthetic inorganic pigments are the most widely used in ceramic applications because they have excellent chemical and thermal stability and also, in general, a lower toxicity to man and to the environment. In the present work, the ceramic black pigment CoFe2O4 was synthesized by the polymerization Complex method (MPC) in order to form a material with good chemical homogeneity. Aiming to optimize the process of getting the pigment through the MPC was used a fractional factorial design 2(5-2), with resolution III. The factors studied in mathematical models were: citric acid concentration, the pyrolysis time, temperature, time and rate of calcination. The response surfaces using the software statistica 7.0. The powders were characterized by thermal analysis (TG/DSC), x-ray diffraction (XRD), scanning electron microscopy (SEM) and spectroscopy in the UV-visible. Based on the results, there was the formation of phase cobalt ferrite (CoFe2O4) with spinel structure. The color of the pigments obtained showed dark shades, from black to gray. The model chosen was appropriate since proved to be adjusted and predictive. Planning also showed that all factors were significant, with a confidence level of 95%
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ