980 resultados para FORMIC ACID


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bifunctionalized TiO2 film containing a dye-sensitized zone and a catalysis zone is designed for visible-light photocatalytic reduction of CO2 to chemicals continuously. Charge separation can be accomplished with electron transferring to catalysis zone and positive charge transforming to anode. Highly efficient conversion of CO2 to formic acid, formaldehyde, and methanol is achieved through the transferring electrons on conduction bands (CB) of TiO2. Reduction of CO2 and O2 evolution take place in separated solutions on different catalysts. The separated solution carried out in this photo-reactor system can avoid CO2 reduction products being oxidized by anode. The yields of reduction products were enhanced remarkably by external electrical power. This study provides not only a new photocatalytic system but also a potential of renewable energy source via carbon dioxide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infrared spectra are reported of formic acid adsorbed at 300 K on a reduced copper catalyst (Cu/SiO2) and a copper surface which had been oxidised by exposure to nitrous oxide. Formic acid was weakly adsorbed on the silica support. Ligation of formic acid to the copper surface occurred only on the reduced catalyst. Dissociative adsorption resulted in the formation of unidentate formate on the oxidised catalyst. The presence of reduced copper metal instigated a rapid reorientation to a bidentate formate species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fourier-transform infrared (FTIR) spectra are reported of formic acid and formaldehyde on ZnO/SiO2, reduced Cu/ZnO/SiO2 and reoxidised Cu/ZnO/SiO2 catalyst. Formic acid adsorption on ZnO/SiO2 produced mainly bidentate zinc formate species with a lesser quantity of unidentate zinc formate. Formic acid on reduced Cu/ZnO/SiO2 catalyst resulted not only in the formation of bridging copper formate structures but also in an enhanced amount of formate relative to that for ZnO/SiO2 catalyst. Formic acid on reoxidised Cu/ZnO/SiO2 gave unidentate formate species on copper in addition to zinc formate moieties. The interaction of formaldehyde with ZnO/SiO2 catalyst resulted in the formation of zinc formate species. The same reaction on reduced Cu/ZnO/SiO2 catalyst gave bridging formate on copper and a remarkable increase in the quantity of formate species associated with the zinc oxide. Adsorption of formaldehyde on a reoxidised Cu/ZnO/SiO2 catalyst produced bridging copper formate and again an apparent increase in the concentration of zinc formate species. An explanation in terms of the adsorption of molecules at special sites located at the interface between copper and zinc oxide is given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation of highly anisotropic AuPt alloys has been achieved via a simple electrochemical approach without the need for organic surfactants to direct the growth process. The surface and bulk properties of these materials were characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and electrochemically by cyclic voltammetry to confirm alloy formation. It was found that AuPt materials are highly active for both the model hydrogen evolution reaction and the fuel cell relevant formic acid oxidation reaction. In particular for the latter case the preferred dehydrogenation pathway was observed at AuPt compared to nanostructured Pt prepared under identical electrochemical conditions which demonstrated the less preferred dehydration pathway. The enhanced performance is attributed to both the ensemble effect which facilitates CO(ads) removal from the surface as well as the highly anisotropic nanostructure of AuPt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water adsorbs molecularly on a clean Zn(0001) surface; on a surface covered with atomic oxygen, however, hydroxyl species is produced due to proton abstraction by the surface oxygen atoms. Methanol, molecularly adsorbed on a clean surface at 80 K, transforms to methoxy species above 110 K. On an atomic oxygen-covered surface, adsorbed methanol gives rise to methoxy species and water, the latter arising from proton abstraction. HCHO adsorbs molecularly at 80 K on both clean as well as oxygen-covered surfaces and polymerizes at higher temperatures. Formic acid does not adsorb on a clean Zn surface, but on an oxygen-covered surface gives rise to formate and hydroxyl species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dendrite Pd with corrugated surfaces, obtained by a novel AC technique, exhibits an exceptionally high catalytic activity for the oxidation of formic acid because of the presence of a high density of surface steps. The formation of twinned dendrites leads to a predominance of exposed 111 facets with a high density of surface steps as evident from high resolution electron microscopy investigations. These surface sites provide active sites for the absorption of the formic acid molecules, thereby enhancing the reaction rate. Control experiments by varying the time of deposition reveal the formation of partially grown dendrites at shorter times indicating that the dendrites were formed by growth rather than particle attachment. Our deposition method opens up interesting possibilities to produce artisotropic nanostructures with corrugated surfaces by exploiting the perturbations involved in the growth process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoclusters of Pt were electrochemically deposited on a conducting polymer, namely, poly(3,4-ethylenedioxythiophene) (PEDOT), which was also electrochemically deposited on carbon paper current collector. PEDOT facilitated uniform distribution of Pt nanoclusters, when compared with Pt electrodeposition on bare carbon paper substrate. Spectroscopy data indicated absence of any interaction between PEDOT and Pt. The electrochemically active surface area as measured from carbon monoxide adsorption followed by its oxidation was several times greater for Pt-PEDOT/C electrode in comparison with Pt/C electrode. The catalytic activity of Pt-PEDOT/C electrode for electrooxidation of formic acid was significantly greater than that of Pt/C electrode. Amperometry data suggested that the electrodes were stable for continuous oxidation of HCOOH.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The superior catalytic activity along with improved CO tolerance for formic acid electro-oxidation has been demonstrated on a NiO-decorated reduced graphene oxide (rGO) catalyst. The cyclic voltammetry response of rGO-NiO/Pt catalyst elucidates improved CO tolerance and follows direct oxidation pathway. It is probably due to the beneficial effect of residual oxygen groups on rGO support which is supported by FT-IR spectrum. A strong interaction of rGO support with NiO nanoparticles facilitates the removal of CO from the catalyst surface. The chronoamperometric response indicates a higher catalytic activity and stability of rGO-NiO/Pt catalyst than the NiO/Pt and unmodified Pt electrode catalyst for a prolonged time of continuous oxidation of formic acid. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pt-supported La1-xSrxCoO3 and Pt-doped La1-xSrxCoO3 are synthesized using chemical reduction and solution combustion method, respectively. Chemical reduction is carried out using formaldehyde as a reducing agent giving Pt-supported La1-xSrxCoO3. Solution combustion method is used to prepare Pt-doped La1-xSrxCoO3. Detailed characterization using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) surface area measurement, and transmission electron microscopy (TEM) is carried out to distinguish the Pt-supported and Pt-doped compounds in terms of their morphology and Pt oxidations states. TEM results indeed show the differences in their morphology. Further, electrochemical measurements are performed in neutral medium to differentiate their electrochemical activity. Cyclic voltammetry (CV) shows noticeable differences between Pt-supported La1-xSrxCoO3 and Pt-doped La1-xSrxCoO3. Importantly, our results show that Pt4+ in doped compound has poor to zero electrocatalytic activity toward formic acid and methanol electro-oxidation in comparison to Pt-0 in supported compound. This study shows that metallic Pt in zero oxidation state is a superior catalyst to Pt in +4 oxidation state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Formic acid, the simplest carboxylic acid, is found in nature or can be easily synthesized in the laboratory (major by-product of some second generation biorefinery processes); it is also an important chemical due to its myriad applications in pharmaceuticals and industry. In recent years, formic acid has been used as an important fuel either without reformation (in direct formic acid fuel cells, DFAFCs) or with reformation (as a potential chemical hydrogen storage material). Owing to the better efficiency of DFAFCs compared to several other PEMFCs and reversible hydrogen storage systems, formic acid could serve as one of the better fuels for portable devices, vehicles and other energy-related applications in the future. This perspective is focused on recent developments in the use of formic acid as a reversible source for hydrogen storage. Recent developments in this direction will likely give access to a variety of low-cost and highly efficient rechargeable hydrogen fuel cells within the next few years by the use of suitable homogeneous metal complex/heterogeneous metal nanoparticle-based catalysts under ambient reaction conditions. The production of formic acid from atmospheric CO2 (a greenhouse gas) will decrease the CO2 content and may be helpful in reducing global warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It was reported for the first time that the electrocatalytic activity of the Carbon-supported Pd-Ir (Pd-Ir/C) catalyst with the suitable atomic ratio of Pd and Ir for the oxidation of formic acid in the direct formic acid fuel cell (DFAFC) is better than that of the Carbon-supported Pd (Pd/C) catalyst, although Ir has no electrocatalytic activity for the oxidation of formic acid. The potential of the anodic peak of formic acid at the Pd-Ir/C catalyst electrode with the atomic ratio of Pd and Ir = 5:1 is 50 mV more negative than that and the peak current density is 13% higher than that at the Pd/C catalyst electrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, it was found that the electrocatalytic activity of a Pt electrode for the electro-oxidation of formic acid could be dramatically enhanced with the modification of macrocycle compounds, such as iron-tetrasulfophthalocyanine (FeTSPc). The electro-oxidation of formic acid on a modified Pt electrode with FeTSPc occurs mainly through a direct pathway. A series of macrocycle compounds were also investigated as modifiers and exhibited a promotion effect similar to the Pt electrode.