925 resultados para Euler polynomials and numbers
Resumo:
We present a summary of the series representations of the remainders in the expansions in ascending powers of t of 2/(et+1)2/(et+1) , sech t and coth t and establish simple bounds for these remainders when t>0t>0 . Several applications of these expansions are given which enable us to deduce some inequalities and completely monotonic functions associated with the ratio of two gamma functions. In addition, we derive a (presumably new) quadratic recurrence relation for the Bernoulli numbers Bn.
Resumo:
It is well known and easy to see that the zeros of both the associated polynomial and the derivative of an orthogonal polynomial p(n)(x) interlace with the zeros of p(n)(x) itself. The natural question of how these zeros interlace is under discussion. We give a sufficient condition for the mutual location of kth, 1 less than or equal to k less than or equal to n - 1, zeros of the associated polynomial and the derivative of an orthogonal polynomial in terms of inequalities for the corresponding Cotes numbers. Applications to the zeros of the associated polynomials and the derivatives of the classical orthogonal polynomials are provided. Various inequalities for zeros of higher order associated polynomials and higher order derivatives of orthogonal polynomials are proved. The results involve both classical and discrete orthogonal polynomials, where, in the discrete case, the differential operator is substituted by the difference operator. (C) 2001 IMACS. Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
The television quiz program Letters and Numbers, broadcast on the SBS network, has recently become quite popular in Australia. This paper considers an implementation in Excel 2010 and its potential as a vehicle to showcase a range of mathematical and computing concepts and principles.
Resumo:
The governing differential equation of a rotating beam becomes the stiff-string equation if we assume uniform tension. We find the tension in the stiff string which yields the same frequency as a rotating cantilever beam with a prescribed rotating speed and identical uniform mass and stiffness. This tension varies for different modes and are found by solving a transcendental equation using bisection method. We also find the location along the rotating beam where equivalent constant tension for the stiff string acts for a given mode. Both Euler-Bernoulli and Timoshenko beams are considered for numerical results. The results provide physical insight into relation between rotating beams and stiff string which are useful for creating basis functions for approximate methods in vibration analysis of rotating beams.
Modeling harvest rates and numbers from age and sex ratios: A demonstration for elephant populations
Resumo:
Illegal harvest rates of wildlife populations are often unknown or difficult to estimate from field data due to under-reporting or incomplete detection of carcasses. This is especially true for elephants that are killed for ivory or in conflicts with people. We describe a method to infer harvest rates from coarse field data of three population parameters, namely, adult female to male ratio, male old-adult to young-adult ratio, and proportion of adult males in the population using Jensen's (2000) 2-sex, density-dependent Leslie matrix model. The specific combination of male and female harvest rates and numbers can be determined from the history of harvest and estimate of population size. We applied this technique to two populations of elephants for which data on age structure and records of mortality were available-a forest-dwelling population of the Asian elephant (at Nagarahole, India) and an African savannah elephant population (at Samburu, Kenya) that had experienced male-biased harvest regimes over 2-3 decades. For the Nagarahole population, the recorded numbers of male and female elephants killed illegally during 1981-2000 were 64% and 88% of the values predicted by the model, respectively, implying some non-detection or incomplete reporting while for the Samburu population the recorded and modeled numbers of harvest during 1990-1999 closely matched. This technique, applicable to any animal population following logistic growth model, can be especially useful for inferring illegal harvest numbers of forest elephants in Africa and Asia.
Modeling harvest rates and numbers from age and sex ratios: A demonstration for elephant populations
Resumo:
Illegal harvest rates of wildlife populations are often unknown or difficult to estimate from field data due to under-reporting or incomplete detection of carcasses. This is especially true for elephants that are killed for ivory or in conflicts with people. We describe a method to infer harvest rates from coarse field data of three population parameters, namely, adult female to male ratio, male old-adult to young-adult ratio, and proportion of adult males in the population using Jensen's (2000) 2-sex, density-dependent Leslie matrix model. The specific combination of male and female harvest rates and numbers can be determined from the history of harvest and estimate of population size. We applied this technique to two populations of elephants for which data on age structure and records of mortality were available-a forest-dwelling population of the Asian elephant (at Nagarahole, India) and an African savannah elephant population (at Samburu, Kenya) that had experienced male-biased harvest regimes over 2-3 decades. For the Nagarahole population, the recorded numbers of male and female elephants killed illegally during 1981-2000 were 64% and 88% of the values predicted by the model, respectively, implying some non-detection or incomplete reporting while for the Samburu population the recorded and modeled numbers of harvest during 1990-1999 closely matched. This technique, applicable to any animal population following logistic growth model, can be especially useful for inferring illegal harvest numbers of forest elephants in Africa and Asia. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Soit $\displaystyle P(z):=\sum_{\nu=0}^na_\nu z^{\nu}$ un polynôme de degré $n$ et $\displaystyle M:=\sup_{|z|=1}|P(z)|.$ Sans aucne restriction suplémentaire, on sait que $|P'(z)|\leq Mn$ pour $|z|\leq 1$ (inégalité de Bernstein). Si nous supposons maintenant que les zéros du polynôme $P$ sont à l'extérieur du cercle $|z|=k,$ quelle amélioration peut-on apporter à l'inégalité de Bernstein? Il est déjà connu [{\bf \ref{Mal1}}] que dans le cas où $k\geq 1$ on a $$(*) \qquad |P'(z)|\leq \frac{n}{1+k}M \qquad (|z|\leq 1),$$ qu'en est-il pour le cas où $k < 1$? Quelle est l'inégalité analogue à $(*)$ pour une fonction entière de type exponentiel $\tau ?$ D'autre part, si on suppose que $P$ a tous ses zéros dans $|z|\geq k \, \, (k\geq 1),$ quelle est l'estimation de $|P'(z)|$ sur le cercle unité, en terme des quatre premiers termes de son développement en série entière autour de l'origine. Cette thèse constitue une contribution à la théorie analytique des polynômes à la lumière de ces questions.
Resumo:
The wealth of information available freely on the web and medical image databases poses a major problem for the end users: how to find the information needed? Content –Based Image Retrieval is the obvious solution.A standard called MPEG-7 was evolved to address the interoperability issues of content-based search.The work presented in this thesis mainly concentrates on developing new shape descriptors and a framework for content – based retrieval of scoliosis images.New region-based and contour based shape descriptor is developed based on orthogonal Legendre polymomials.A novel system for indexing and retrieval of digital spine radiographs with scoliosis is presented.
Resumo:
This article surveys the classical orthogonal polynomial systems of the Hahn class, which are solutions of second-order differential, difference or q-difference equations. Orthogonal families satisfy three-term recurrence equations. Example applications of an algorithm to determine whether a three-term recurrence equation has solutions in the Hahn class - implemented in the computer algebra system Maple - are given. Modifications of these families, in particular associated orthogonal systems, satisfy fourth-order operator equations. A factorization of these equations leads to a solution basis.
Resumo:
In dieser Dissertation präsentieren wir zunächst eine Verallgemeinerung der üblichen Sturm-Liouville-Probleme mit symmetrischen Lösungen und erklären eine umfassendere Klasse. Dann führen wir einige neue Klassen orthogonaler Polynome und spezieller Funktionen ein, welche sich aus dieser symmetrischen Verallgemeinerung ableiten lassen. Als eine spezielle Konsequenz dieser Verallgemeinerung führen wir ein Polynomsystem mit vier freien Parametern ein und zeigen, dass in diesem System fast alle klassischen symmetrischen orthogonalen Polynome wie die Legendrepolynome, die Chebyshevpolynome erster und zweiter Art, die Gegenbauerpolynome, die verallgemeinerten Gegenbauerpolynome, die Hermitepolynome, die verallgemeinerten Hermitepolynome und zwei weitere neue endliche Systeme orthogonaler Polynome enthalten sind. All diese Polynome können direkt durch das neu eingeführte System ausgedrückt werden. Ferner bestimmen wir alle Standardeigenschaften des neuen Systems, insbesondere eine explizite Darstellung, eine Differentialgleichung zweiter Ordnung, eine generische Orthogonalitätsbeziehung sowie eine generische Dreitermrekursion. Außerdem benutzen wir diese Erweiterung, um die assoziierten Legendrefunktionen, welche viele Anwendungen in Physik und Ingenieurwissenschaften haben, zu verallgemeinern, und wir zeigen, dass diese Verallgemeinerung Orthogonalitätseigenschaft und -intervall erhält. In einem weiteren Kapitel der Dissertation studieren wir detailliert die Standardeigenschaften endlicher orthogonaler Polynomsysteme, welche sich aus der üblichen Sturm-Liouville-Theorie ergeben und wir zeigen, dass sie orthogonal bezüglich der Fisherschen F-Verteilung, der inversen Gammaverteilung und der verallgemeinerten t-Verteilung sind. Im nächsten Abschnitt der Dissertation betrachten wir eine vierparametrige Verallgemeinerung der Studentschen t-Verteilung. Wir zeigen, dass diese Verteilung gegen die Normalverteilung konvergiert, wenn die Anzahl der Stichprobe gegen Unendlich strebt. Eine ähnliche Verallgemeinerung der Fisherschen F-Verteilung konvergiert gegen die chi-Quadrat-Verteilung. Ferner führen wir im letzten Abschnitt der Dissertation einige neue Folgen spezieller Funktionen ein, welche Anwendungen bei der Lösung in Kugelkoordinaten der klassischen Potentialgleichung, der Wärmeleitungsgleichung und der Wellengleichung haben. Schließlich erklären wir zwei neue Klassen rationaler orthogonaler hypergeometrischer Funktionen, und wir zeigen unter Benutzung der Fouriertransformation und der Parsevalschen Gleichung, dass es sich um endliche Orthogonalsysteme mit Gewichtsfunktionen vom Gammatyp handelt.
Resumo:
Tomato plants inoculated with Meloidogyne javanica juveniles infected with Pasteuria penetrans were grown in a glasshouse (20-32degreesC) for 36, 53, 71 and 88 days and in a growth room (26-29degreesC) for 36, 53, 71 and 80 days. Over these periods the numbers of P penetrans endospores in infected M. javanica females and the weights of individual infected females increased. In the growth room, most spores (2.03 x 10(6)) were found after 71 days. However, in the glasshouse the rate of increase was slower and spore numbers were still increasing at the final sampling at 88 days (2.04 x 10(6)), as was the weight of the nematodes (72 mug). Weights of uninfected females reached a maximum of 36.2 and 43.1 mug after 71 days in the growth room and glasshouse, respectively.