989 resultados para Eukaryotic Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Completion of DNA replication before mitosis is essential for genome stability and cell viability. Cellular controls called checkpoints act as surveillance mechanisms capable of detecting errors and blocking cell cycle progression to allow time for those errors to be corrected. An important question in the cell cycle field is whether eukaryotic cells possess mechanisms that monitor ongoing DNA replication and make sure that all chromosomes are fully replicated before entering mitosis, that is whether a replication-completion checkpoint exists. From recent studies with smc5–smc6 mutants it appears that yeast cells can enter anaphase without noticing that replication in the ribosomal DNA array was unfinished. smc5–smc6 mutants are proficient in all known cellular checkpoints, namely the S phase checkpoint, DNA-damage checkpoint, and spindle checkpoint, thus suggesting that none of these checkpoints can monitor the presence of unreplicated segments or the unhindered progression of forks in rDNA. Therefore, these results strongly suggest that normal yeast cells do not contain a DNA replication-completion checkpoint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behavior of living murine T-lymphocytes was assessed by atomic force microscopy (AFM). A robust experimental procedure was developed to overcome some features of lymphocytes, in particular their spherical shape and non-adherent character. The procedure included the immobilization of the lymphocytes on amine-functionalized substrates, the use of hydrodynamic effects on the deflection of the AFM cantilever to monitor the approaching, and the use of the jumping mode for obtaining the images. Indentation curves were analyzed according to Hertz's model for contact mechanics. The calculated values of the elastic modulus are consistent both when considering the results obtained from a single lymphocyte and when comparing the curves recorded from cells of different specimens

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bordetella pertussis secretes a calmodulin-activated adenylate cyclase toxin, CyaA, that is able to deliver its N-terminal catalytic domain (400-aa residues) into the cytosol of eukaryotic target cells, directly through the cytoplasmic membrane. We have previously shown that CyaA can be used as a vehicle to deliver T cell epitopes, inserted within the catalytic domain of the toxin, into antigen-presenting cells and can trigger specific class I-restricted CD8+ cytotoxic T cell responses in vivo. Here, we constructed a series of recombinant toxins harboring at the same insertion site various peptide sequences of 11–25 amino acids, corresponding to defined CD8+ T cell epitopes and differing in the charge of the inserted sequence. We show that inserted peptide sequences containing net negative charges (−1 or −2) decreased or completely blocked (charge of −4) the internalization of the toxin into target cells in vitro and abolished the induction of cytotoxic T cell responses in vivo. The blocking of translocation due to the inserted acidic sequences can be relieved by appropriate mutations in the flanking region of CyaA that counterbalance the inserted charges. Our data indicate that (i) the electrostatic charge of the peptides inserted within the catalytic domain of CyaA is critical for its translocation into eukaryotic cells and (ii) the delivery of T cell epitopes into the cytosol of antigen-presenting cells by recombinant CyaA toxins is essential for the in vivo stimulation of specific cytotoxic T cells. These findings will help to engineer improved recombinant CyaA vectors able to stimulate more efficiently cellular immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an approach for monitoring protein–protein interactions within intact eukaryotic cells, which should increase our understanding of the regulatory circuitry that controls the proliferation and differentiation of cells and how these processes go awry in disease states such as cancer. Chimeric proteins composed of proteins of interest fused to complementing β-galactosidase (β-gal) deletion mutants permit a novel analysis of protein complexes within cells. In this approach, the β-gal activity resulting from the forced interaction of nonfunctional weakly complementing β-gal peptides (Δα and Δω) serves as a measure of the extent of interaction of the non-β-gal portions of the chimeras. To test this application of lacZ intracistronic complementation, proteins that form a complex in the presence of rapamycin were used. These proteins, FRAP and FKBP12, were synthesized as fusion proteins with Δα and Δω, respectively. Enzymatic β-gal activity served to monitor the formation of the rapamycin-induced chimeric FRAP/FKBP12 protein complex in a time- and dose-dependent manner, as assessed by histochemical, biochemical, and fluorescence-activated cell sorting assays. This approach may prove to be a valuable adjunct to in vitro immunoprecipitation and crosslinking methods and in vivo yeast two-hybrid and fluorescence energy transfer systems. It may also allow a direct assessment of specific protein dimerization interactions in a biologically relevant context, localized in the cell compartments in which they occur, and in the milieu of competing proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of pathogenic, Gram-negative bacteria are able to secrete specific proteins across three membranes: the inner and outer bacterial membrane and the eukaryotic plasma membrane. In the pathogen Yersinia enterocolitica, the primary structure of the secreted proteins as well as of the components of the secretion machinery, both plasmid-encoded, is known. However, the mechanism of protein translocation is largely unknown. Here we show that Y. enterocolitica polymerizes a 6-kDa protein of the secretion machinery into needles that are able to puncture the eukaryotic plasma membrane. These needles form a conduit for the transport of specific proteins from the bacterial to the eukaryotic cytoplasm, where they exert their cytotoxic activity. In negatively stained electron micrographs, the isolated needles were 60–80 nm long and 6–7 nm wide and contained a hollow center of about 2 nm. Our data indicate that it is the polymerization of the 6-kDa protein into these needles that provides the force to perforate the eukaryotic plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two cationic lipids, bis-guanidinium-spermidine-cholesterol (BGSC) and bis-guanidinium-trencholesterol (BGTC)-cholesterol derivatives bearing two guanidinium groups-have been synthesized and tested as artificial vectors for gene transfer. They combine the membrane compatible features of the cholesterol subunit and the favorable structural and high pKa features of the guanidinium functions for binding DNA via its phosphate groups. Reagent BGTC is very efficient for transfection into a variety of mammalian cell lines when used as a micellar solution. In addition, both BGTC and BGSC present also a high transfection activity when formulated as liposomes with the neutral phospholipid dioleoylphosphatidyl ethanolamine. These results reveal the usefulness of cholesterol derivatives bearing guanidinium groups for gene transfer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The canonical function of eEF1A is delivery of the aminoacylated tRNA to the A site of the ribosome during protein translation, however, it is also known to be an actin binding protein. As well as this actin binding function, eEF1A has been shown to be involved in other cellular processes such as cell proliferation and apoptosis. It has long been thought that the actin cytoskeleton and protein synthesis are linked and eEF1A has been suggested to be a candidate protein to form this link, though very little is understood about the relationship between its two functions. Overexpression of eEF1A has also been shown to be implicated in many different types of cancers, especially cancers that are metastatic, therefore it is important to further understand how eEF1A can affect both translation and the organisation of the actin cytoskeleton. To this end, we aimed to determine the effects of reduced expression of eEF1A on both translation and its non canonical functions in CHO cells. We have shown that reduced expression of eEF1A in this cell system results in no change in protein synthesis, however results in an increased number of actin stress fibres and other proteins associated with these fibres such as myosin IIA, paxillin and vinculin. Cell motility and attachment are also affected by this reduction in eEF1A protein expression. The organisational and motility phenotypes were found to be specific to eEF1A by transforming the cells with plasmids containing either human eEF1A1 or eEF1A2. Though the mechanisms by which these effects are regulated have not yet been established, this data provides evidence to show that the translation and actin binding functions of eEF1A are independent of each other as well as being suggestive of a role for eEF1A in cell motility as supported by the observation that overexpression of eEF1A protein tends to be associated with the cancer cells that are metastatic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 1 diabetes affects over 108,000 children, and this number is steadily increasing. Current insulin therapies help manage the disease but are not a cure. Over a child’s lifetime they can develop kidney disease, blindness, cardiovascular disease and many other issues due to the complications of type 1 diabetes. This autoimmune disease destroys beta cells located in the pancreas, which are used to regulate glucose levels in the body. Because there is no cure and many children are affected by the disease there is a need for alternative therapeutic options that can lead to a cure. Human mesenchymal stem cells (hMSCs) are an important cell source for stem cell therapeutics due to their differentiation capacity, self-renewal, and trophic activity. hMSCs are readily available in the bone marrow, and act as an internal repair system within the body, and they have been shown to differentiate into insulin producing cells. However, after isolation hMSCs are a heterogeneous cell population, which requires secondary processing. To resolve the heterogeneity issue hMSCs are separated using fluorescent- and magnetic-activate cell sorting with antigen labeling. These techniques are efficient but reduce cell viability after separation due to the cell labeling. Therefore, to make hMSCs more readily available for type 1 diabetes therapeutics, they should be separated without diminishing there functional capabilities. Dielectrophoresis is an alternative separation technique that has the capability to separated hMSCs. This dissertation uses dielectrophoresis to characterize the dielectric properties of hMSCs. The goal is to use hMSCs dielectric signature as a separation criteria rather than the antigen labeling implemented with FACS and MACS. DEP has been used to characterize other cell systems, and is a viable separation technique for hMSCs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters for which the transcription start site has been determined experimentally. Access to promoter sequences is provided by pointers to positions in nucleotide sequence entries. The annotation part of an entry includes a description of the initiation site mapping data, exhaustive cross-references to the EMBL nucleotide sequence database, SWISS-PROT, TRANSFAC and other databases, as well as bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. WWW-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria, and to navigate to related databases exploiting different cross-references. The EPD web site also features yearly updated base frequency matrices for major eukaryotic promoter elements. EPD can be accessed at http://www.epd.isb-sib.ch

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In mammalian cells, proper gene regulation is achieved by the complex interplay of transcription factors that activate or repress gene expression by binding to the regulatory regions of target promoters. While transcriptional activators have been extensively characterised and classified into functional groups, relatively little is known about the comparative strength and cell type-specificity of transcriptional repressors. Here, we have compared the ability of a series of eukaryotic repression domains to silence basal and activated transcription. A series of the most potent repression domains was further tested in the context of a gene therapy gene-switch system in various cell types. The results indicate that the analysed repression domains exert varying silencing activities in different promoter contexts. Furthermore, their potential for gene silencing varies also depending on the cellular context. When multimerised within one chimeric repressor protein, particular combinations of repressor domains were found to display synergistic repressing effects and efficient repression in a panel of cell lines. This approach thus allowed the identification of transcriptional repressors that are both potent and versatile in terms of cellular specificity as a basis for gene switch systems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Eukaryotic Promoter Database (EPD) is an annotated non-redundant collection of eukaryotic POL II promoters, experimentally defined by a transcription start site (TSS). There may be multiple promoter entries for a single gene. The underlying experimental evidence comes from journal articles and, starting from release 73, from 5' ESTs of full-length cDNA clones used for so-called in silico primer extension. Access to promoter sequences is provided by pointers to TSS positions in nucleotide sequence entries. The annotation part of an EPD entry includes a description of the type and source of the initiation site mapping data, links to other biological databases and bibliographic references. EPD is structured in a way that facilitates dynamic extraction of biologically meaningful promoter subsets for comparative sequence analysis. Web-based interfaces have been developed that enable the user to view EPD entries in different formats, to select and extract promoter sequences according to a variety of criteria and to navigate to related databases exploiting different cross-references. Tools for analysing sequence motifs around TSSs defined in EPD are provided by the signal search analysis server. EPD can be accessed at http://www.epd. isb-sib.ch.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i) tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii) actin-like homologues, such as MreB and Mb1, which are involved in controlling cell width and cell length, and (iii) intermediate filament homologues, including crescentin and CfpA, which localise on the concave side of a bacterium and along its inner curvature and associate with its membrane. Some prokaryotes exhibit specialised membrane-bound organelles in the cytoplasm, such as magnetosomes and acidocalcisomes, as well as protein complexes, such as carboxysomes. This review also examines recent data on the presence of nanotubes, which are structures that are well characterised in mammalian cells that allow direct contact and communication between cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eukaryotic cells make many types of primary and processed RNAs that are found either in specific subcellular compartments or throughout the cells. A complete catalogue of these RNAs is not yet available and their characteristic subcellular localizations are also poorly understood. Because RNA represents the direct output of the genetic information encoded by genomes and a significant proportion of a cell's regulatory capabilities are focused on its synthesis, processing, transport, modification and translation, the generation of such a catalogue is crucial for understanding genome function. Here we report evidence that three-quarters of the human genome is capable of being transcribed, as well as observations about the range and levels of expression, localization, processing fates, regulatory regions and modifications of almost all currently annotated and thousands of previously unannotated RNAs. These observations, taken together, prompt a redefinition of the concept of a gene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molecular chaperones are central to cellular protein homeostasis. In mammals, protein misfolding diseases and aging cause inflammation and progressive tissue loss, in correlation with the accumulation of toxic protein aggregates and the defective expression of chaperone genes. Bacteria and non-diseased, non-aged eukaryotic cells effectively respond to heat shock by inducing the accumulation of heat-shock proteins (HSPs), many of which molecular chaperones involved in protein homeostasis, in reducing stress damages and promoting cellular recovery and thermotolerance. We performed a meta-analysis of published microarray data and compared expression profiles of HSP genes from mammalian and plant cells in response to heat or isothermal treatments with drugs. The differences and overlaps between HSP and chaperone genes were analyzed, and expression patterns were clustered and organized in a network. HSPs and chaperones only partly overlapped. Heat-shock induced a subset of chaperones primarily targeted to the cytoplasm and organelles but not to the endoplasmic reticulum, which organized into a network with a central core of Hsp90s, Hsp70s, and sHSPs. Heat was best mimicked by isothermal treatments with Hsp90 inhibitors, whereas less toxic drugs, some of which non-steroidal anti-inflammatory drugs, weakly expressed different subsets of Hsp chaperones. This type of analysis may uncover new HSP-inducing drugs to improve protein homeostasis in misfolding and aging diseases.