1000 resultados para Escoamento em meios porosos - Métodos de simulação


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study provides a methodology that gives a predictive character the computer simulations based on detailed models of the geometry of a porous medium. We using the software FLUENT to investigate the flow of a viscous Newtonian fluid through a random fractal medium which simplifies a two-dimensional disordered porous medium representing a petroleum reservoir. This fractal model is formed by obstacles of various sizes, whose size distribution function follows a power law where exponent is defined as the fractal dimension of fractionation Dff of the model characterizing the process of fragmentation these obstacles. They are randomly disposed in a rectangular channel. The modeling process incorporates modern concepts, scaling laws, to analyze the influence of heterogeneity found in the fields of the porosity and of the permeability in such a way as to characterize the medium in terms of their fractal properties. This procedure allows numerically analyze the measurements of permeability k and the drag coefficient Cd proposed relationships, like power law, for these properties on various modeling schemes. The purpose of this research is to study the variability provided by these heterogeneities where the velocity field and other details of viscous fluid dynamics are obtained by solving numerically the continuity and Navier-Stokes equations at pore level and observe how the fractal dimension of fractionation of the model can affect their hydrodynamic properties. This study were considered two classes of models, models with constant porosity, MPC, and models with varying porosity, MPV. The results have allowed us to find numerical relationship between the permeability, drag coefficient and the fractal dimension of fractionation of the medium. Based on these numerical results we have proposed scaling relations and algebraic expressions involving the relevant parameters of the phenomenon. In this study analytical equations were determined for Dff depending on the geometrical parameters of the models. We also found a relation between the permeability and the drag coefficient which is inversely proportional to one another. As for the difference in behavior it is most striking in the classes of models MPV. That is, the fact that the porosity vary in these models is an additional factor that plays a significant role in flow analysis. Finally, the results proved satisfactory and consistent, which demonstrates the effectiveness of the referred methodology for all applications analyzed in this study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho consiste na solução híbrida da Equação de Advecção-dispersão de solutos unidimensional em meios porosos homogêneos ou heterogêneos, para um único componente, com coeficientes de retardo, dispersão, velocidade média, decaimento e produção dependentes da distância percorrida pelo soluto. Serão estudados os casos de dispersão-advecção em que o retardamento, dispersão, velocidade do fluxo, decaimento e produção variem de forma linear enquanto a dispersividade assuma os modelos linear, parabólico ou exponencial. Para a solução da equação foi aplicada a Técnica da Transformada Integral Generalizada. Os resultados obtidos nesta dissertação demonstram boa concordância entre os problemas-exemplo e suas soluções numéricas ou analíticas contidas na literatura e apontam uma melhor adequação no uso de modelos parabólico no estudo da advecção-dispersão em curto intervalo de tempo, enquanto que o modelo linear converge mais rapidamente em tempos prolongados de simulação. A convergência da série mostrou-se ter dependência direta quanto ao comprimento do domínio, ao modelo de dispersão e da dispersividade adotada, convergindo com até 60 termos, podendo chegar a NT = 170, para os casos heterogêneos, utilizando o modelo de dispersão exponencial, respeitando o critério adotado de 10-4.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Civil – Perfil de Estruturas

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Civil

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Com o propósito de avaliar os efeitos de polímeros hidrorretentores nas propriedades físicas e hidráulicas de dois meios porosos, realizou-se um experimento no Laboratório de Física do Solo da Universidade Federal do Paraná, entre 18/03 e 30/10/97. O polímero hidrorretentor usado foi produzido na Bélgica e os meios porosos foram um Latossolo Vermelho textura argilosa e uma Areia Quartzosa Marinha, ambos na forma de TFSA. Os polímeros foram aplicados na forma de grãos passados em peneira de 0,5 e 1 mm de diâmetro, nas seguintes concentrações: 0, 2, 4, 8, 16 e 32 kg m-3. Foram elaboradas as curvas de retenção a baixas tensões (0; 0,025; 0,045; 0,10; 0,20; 0,60; 1,5 e 3,0 mH2O), medidas as condutividades hidráulicas saturadas e estimados os diâmetros médios de poros. O processo da evaporação de água do solo foi simulado por modelagem numérica. As curvas de retenção de água medidas e os perfis de umidade simulados da evaporação afastaram-se consideravelmente da origem (testemunhas) pela adição de polímeros, particularmente na Areia Quartzosa Marinha. O diâmetro médio de poros também aumentou progressivamente com o aumento da concentração de polímeros. Foi verificado que, nas concentrações de polímeros acima de 8 kg m-3, as propriedades físico-hídricas dos meios porosos foram dominadas pela ação dos polímeros hidrorretentores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O presente trabalho é dedicado ao estudo de métodos de simulação para ciclos de Rankine. O trabalho é iniciado com a modelagem de um ciclo de Rankine simples e segue evoluindo para configurações mais complexas tal como o ciclo de Rankine com reaquecimento e regeneração. São adotadas as considerações mais convencionais da prática de projeto de centrais termelétricas cujos sistema térmicos baseiam-se no ciclo de Rankine, incluindo-se queda de pressão em tubulações do circuito além de outras perdas. Em seguida, são estabelecidas as expressões matemáticas que possibilitam a determinação das propriedades termodinâmicas da água em seus mais diversos estados ao longo do ciclo. Por último, são desenvolvidos métodos de simulação, chamados neste trabalho de Substituição Sucessiva e Bloco Único, que caracterizam-se pela resolução simultânea do conjunto de equações algébricas dos ciclos elaborados. As simulações são efetuadas através de programas escritos na linguagem Fortran. Os métodos de simulação são aplicados para a obtenção dos resultados considerados mais importantes na análise de sistemas térmicos de potência, tais como rendimento térmico do ciclo, título na saída da turbina, vazões mássicas pelo sistema, potência nas bombas e calor trocado no gerador de vapor e no condensador Na maioria das simulações, estes resultados apresentam-se como funções da: (1) potência elétrica requerida, eficiência isentrópica e pressões na turbina; (2) eficiência térmica, pressão e temperatura no gerador de vapor; (3) pressão e grau de subresfriamento do líquido saturado no condensador e (4) eficiência isentrópica das bombas. São obtidos os mesmos resultados para os métodos de simulação utilizados. O método da Substituição Sucessiva apresentou menor tempo computacional, principalmente para configurações de ciclo mais complexas. Uma aplicação alternativa do método de Bloco Único demonstrou ser inconveniente para ciclos de configurações mais complexas devido ao elevado tempo computacional, quando todas as equações de cálculo das propriedades termodinâmicas são incluídas no sistema de equações a ser resolvido. Melhores rendimentos térmicos e título na saída da turbina foram obtidos para configurações de ciclo de Rankine com reaquecimento e regeneração.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we present a mathematical and computational modeling of electrokinetic phenomena in electrically charged porous medium. We consider the porous medium composed of three different scales (nanoscopic, microscopic and macroscopic). On the microscopic scale the domain is composed by a porous matrix and a solid phase. The pores are filled with an aqueous phase consisting of ionic solutes fully diluted, and the solid matrix consists of electrically charged particles. Initially we present the mathematical model that governs the electrical double layer in order to quantify the electric potential, electric charge density, ion adsorption and chemical adsorption in nanoscopic scale. Then, we derive the microscopic model, where the adsorption of ions due to the electric double layer and the reactions of protonation/ deprotanaç~ao and zeta potential obtained in modeling nanoscopic arise in microscopic scale through interface conditions in the problem of Stokes and Nerst-Planck equations respectively governing the movement of the aqueous solution and transport of ions. We developed the process of upscaling the problem nano/microscopic using the homogenization technique of periodic structures by deducing the macroscopic model with their respectives cell problems for effective parameters of the macroscopic equations. Considering a clayey porous medium consisting of kaolinite clay plates distributed parallel, we rewrite the macroscopic model in a one-dimensional version. Finally, using a sequential algorithm, we discretize the macroscopic model via the finite element method, along with the interactive method of Picard for the nonlinear terms. Numerical simulations on transient regime with variable pH in one-dimensional case are obtained, aiming computational modeling of the electroremediation process of clay soils contaminated

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this master thesis, we propose a multiscale mathematical and computational model for electrokinetic phenomena in porous media electrically charged. We consider a porous medium rigid and incompressible saturated by an electrolyte solution containing four monovalent ionic solutes completely diluted in the aqueous solvent. Initially we developed the modeling electrical double layer how objective to compute the electrical potential, surface density of electrical charges and considering two chemical reactions, we propose a 2-pK model for calculating the chemical adsorption occurring in the domain of electrical double layer. Having the nanoscopic model, we deduce a model in the microscale, where the electrochemical adsorption of ions, protonation/ deprotonation reactions and zeta potential obtained in the nanoscale, are incorporated through the conditions of interface uid/solid of the Stokes problem and transportation of ions, modeled by equations of Nernst-Planck. Using the homogenization technique of periodic structures, we develop a model in macroscopic scale with respective cells problems for the e ective macroscopic parameters of equations. Finally, we propose several numerical simulations of the multiscale model for uid ow and transport of reactive ionic solute in a saturated aqueous solution of kaolinite. Using nanoscopic model we propose some numerical simulations of electrochemical adsorption phenomena in the electrical double layer. Making use of the nite element method discretize the macroscopic model and propose some numerical simulations in basic and acid system aiming to quantify the transport of ionic solutes in porous media electrically charged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep bed filtration occurs in several industrial and environmental processes like water filtration and soil contamination. In petroleum industry, deep bed filtration occurs near to injection wells during water injection, causing injectivity reduction. It also takes place during well drilling, sand production control, produced water disposal in aquifers, etc. The particle capture in porous media can be caused by different physical mechanisms (size exclusion, electrical forces, bridging, gravity, etc). A statistical model for filtration in porous media is proposed and analytical solutions for suspended and retained particles are derived. The model, which incorporates particle retention probability, is compared with the classical deep bed filtration model allowing a physical interpretation of the filtration coefficients. Comparison of the obtained analytical solutions for the proposed model with the classical model solutions allows concluding that the larger the particle capture probability, the larger the discrepancy between the proposed and the classical models

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analysis of fluid behavior in multiphase flow is very relevant to guarantee system safety. The use of equipment to describe such behavior is subjected to factors such as the high level of investments and of specialized labor. The application of image processing techniques to flow analysis can be a good alternative, however, very little research has been developed. In this subject, this study aims at developing a new approach to image segmentation based on Level Set method that connects the active contours and prior knowledge. In order to do that, a model shape of the targeted object is trained and defined through a model of point distribution and later this model is inserted as one of the extension velocity functions for the curve evolution at zero level of level set method. The proposed approach creates a framework that consists in three terms of energy and an extension velocity function λLg(θ)+vAg(θ)+muP(0)+θf. The first three terms of the equation are the same ones introduced in (LI CHENYANG XU; FOX, 2005) and the last part of the equation θf is based on the representation of object shape proposed in this work. Two method variations are used: one restricted (Restrict Level Set - RLS) and the other with no restriction (Free Level Set - FLS). The first one is used in image segmentation that contains targets with little variation in shape and pose. The second will be used to correctly identify the shape of the bubbles in the liquid gas two phase flows. The efficiency and robustness of the approach RLS and FLS are presented in the images of the liquid gas two phase flows and in the image dataset HTZ (FERRARI et al., 2009). The results confirm the good performance of the proposed algorithm (RLS and FLS) and indicate that the approach may be used as an efficient method to validate and/or calibrate the various existing equipment used as meters for two phase flow properties, as well as in other image segmentation problems.