966 resultados para Equations, Cubic.


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Let K be any quadratic field with O-K its ring of integers. We study the solutions of cubic equations, which represent elliptic curves defined over Q, in quadratic fields and prove some interesting results regarding the solutions by using elementary tools. As an application we consider the Diophantine equation r + s + t = rst = 1 in O-K. This Diophantine equation gives an elliptic curve defined over Q with finite Mordell-Weil group. Using our study of the solutions of cubic equations in quadratic fields we present a simple proof of the fact that except for the ring of integers of Q(i) and Q(root 2), this Diophantine equation is not solvable in the ring of integers of any other quadratic fields, which is already proved in [4].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The standard free energies of formation of Zn2Ti04 and ZnTi03 have been determined in the temperature range 930° to i ioo'x from electromotive force measurements on reversible solid oxide galvanic cells;Ag-5at%znll I Pt, + CaO-Zr02 ZnO I II Ag-5at%Zn Y20r Th02 CaO-Zr02 + ,Pt Zn2Ti04+ ZnTi03 and II Ag-5at%Zn CaO-Zr02 + ,Pt ZnTi03+ Ti02 The values may be expressed by the equations,2ZnO (wurtz) + Ti02(rut) -> Zn2Ti04(sp), f:!:.Go = -750-2-46T (±75)cal;ZnO(wurtz) +Ti02(rut) -> ZnTi03(ilmen) ,f:!:.Co = -]600-0·]99T(±50)cal.Combination of the free energy values with the calorimetric heat of formation, and low-temperature and high-temperature heat capacity of Zn2Ti04 reported in literature, suggests a residual entropy of ],9 (±0·6) cal K-1 mol ? for the cubic spinel. Ideal mixing of Zn2+ and Ti4+ ions on the octahedral sites would result in a configurational contribution to the entropy of 2· 75 cal K-1 rnol ".The difference is indicative of short-range ordering of cations on octahedral sites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.

We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.

We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.

Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.

Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.

In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A technique for obtaining approximate periodic solutions to nonlinear ordinary differential equations is investigated. The approach is based on defining an equivalent differential equation whose exact periodic solution is known. Emphasis is placed on the mathematical justification of the approach. The relationship between the differential equation error and the solution error is investigated, and, under certain conditions, bounds are obtained on the latter. The technique employed is to consider the equation governing the exact solution error as a two point boundary value problem. Among other things, the analysis indicates that if an exact periodic solution to the original system exists, it is always possible to bound the error by selecting an appropriate equivalent system.

Three equivalence criteria for minimizing the differential equation error are compared, namely, minimum mean square error, minimum mean absolute value error, and minimum maximum absolute value error. The problem is analyzed by way of example, and it is concluded that, on the average, the minimum mean square error is the most appropriate criterion to use.

A comparison is made between the use of linear and cubic auxiliary systems for obtaining approximate solutions. In the examples considered, the cubic system provides noticeable improvement over the linear system in describing periodic response.

A comparison of the present approach to some of the more classical techniques is included. It is shown that certain of the standard approaches where a solution form is assumed can yield erroneous qualitative results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight equations of state (EOS) have been evaluated for the simulation of compressible liquid water properties, based on empirical correlations, the principle of corresponding states and thermodynamic relations. The IAPWS-IF97 EOS for water was employed as the reference case. These EOSs were coupled to a modified AUSM+-up convective flux solver to determine flow profiles for three test cases of differing flow conditions. The impact of the non-viscous interaction term discretisation scheme, interfacial pressure method and selection of low-Mach number diffusion were also compared. It was shown that a consistent discretisation scheme using the AUSM+-up solver for both the convective flux and the non-viscous interfacial term demonstrated both robustness and accuracy whilst facilitating a computationally cheaper solution than discretisation of the interfacial term independently by a central scheme. The simple empirical correlations gave excellent results in comparison to the reference IAPWS-IF97 EOS and were recommended for developmental work involving water as a cheaper and more accurate EOS than the more commonly used stiffened-gas model. The correlations based on the principles of corresponding-states and the modified Peng-Robinson cubic EOS also demonstrated a high degree of accuracy, which is promising for future work with generic fluids. Further work will encompass extension of the solver to multiple dimensions and to account for other source terms such as surface tension, along with the incorporation of phase changes. © 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an immersed interface method for the incompressible Navier Stokes equations capable of handling rigid immersed boundaries. The immersed boundary is represented by a set of Lagrangian control points. In order to guarantee that the no-slip condition on the boundary is satisfied, singular forces are applied on the fluid at the immersed boundary. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are interpolated using cubic splines. The strength of singular forces is determined by solving a small system of equations at each time step. The Navier-Stokes equations are discretized on a staggered Cartesian grid by a second order accurate projection method for pressure and velocity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simulations of the global atmosphere for weather and climate forecasting require fast and accurate solutions and so operational models use high-order finite differences on regular structured grids. This precludes the use of local refinement; techniques allowing local refinement are either expensive (eg. high-order finite element techniques) or have reduced accuracy at changes in resolution (eg. unstructured finite-volume with linear differencing). We present solutions of the shallow-water equations for westerly flow over a mid-latitude mountain from a finite-volume model written using OpenFOAM. A second/third-order accurate differencing scheme is applied on arbitrarily unstructured meshes made up of various shapes and refinement patterns. The results are as accurate as equivalent resolution spectral methods. Using lower order differencing reduces accuracy at a refinement pattern which allows errors from refinement of the mountain to accumulate and reduces the global accuracy over a 15 day simulation. We have therefore introduced a scheme which fits a 2D cubic polynomial approximately on a stencil around each cell. Using this scheme means that refinement of the mountain improves the accuracy after a 15 day simulation. This is a more severe test of local mesh refinement for global simulations than has been presented but a realistic test if these techniques are to be used operationally. These efficient, high-order schemes may make it possible for local mesh refinement to be used by weather and climate forecast models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alternative meshes of the sphere and adaptive mesh refinement could be immensely beneficial for weather and climate forecasts, but it is not clear how mesh refinement should be achieved. A finite-volume model that solves the shallow-water equations on any mesh of the surface of the sphere is presented. The accuracy and cost effectiveness of four quasi-uniform meshes of the sphere are compared: a cubed sphere, reduced latitude–longitude, hexagonal–icosahedral, and triangular–icosahedral. On some standard shallow-water tests, the hexagonal–icosahedral mesh performs best and the reduced latitude–longitude mesh performs well only when the flow is aligned with the mesh. The inclusion of a refined mesh over a disc-shaped region is achieved using either gradual Delaunay, gradual Voronoi, or abrupt 2:1 block-structured refinement. These refined regions can actually degrade global accuracy, presumably because of changes in wave dispersion where the mesh is highly nonuniform. However, using gradual refinement to resolve a mountain in an otherwise coarse mesh can improve accuracy for the same cost. The model prognostic variables are height and momentum collocated at cell centers, and (to remove grid-scale oscillations of the A grid) the mass flux between cells is advanced from the old momentum using the momentum equation. Quadratic and upwind biased cubic differencing methods are used as explicit corrections to a fast implicit solution that uses linear differencing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents an application for the plate analysis formulation by BEM where 3 boundary equations are used, written for the transverse displacement w and the normal and tangential derivatives partial derivativew/partial derivativen and partial derivativew/partial derivatives. In this extension, the transverse displacement w is approximated by a cubic polynomial and, as a consequence, partial derivativew/partial derivatives has a quadratic approximation. This alternative BEM formulation improves the analysis of thin plates, when compared to the formulation using the linear approximation for the displacements, mainly in the obtaining of the bending moments at the boundary of the plate. The implementation of this proposal to the computational codes is simple. (C) 2004 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electro-dynamical tethers emit waves in structured denominated Alfven wings. The Derivative Nonlineal Schrödinger Equation (DNLS) possesses the capacity to describe the propagation of circularly polarized Alfven waves of finite amplitude in cold plasmas. The DNLS equation is truncated to explore the coherent, weakly nonlinear, cubic coupling of three waves near resonance, one wave being linearly unstable and the other waves damped. In this article is presented a theoretical and numerical analysis when the growth rate of the unstable wave is next to zero considering two damping models: Landau and resistive. The DNLS equation presents a chaotic dynamics when is consider only three wave truncation. The evolution to chaos possesses three routes: hard transition, period-doubling and intermittence of type I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research work analyses techniques for implementing a cell-centred finite-volume time-domain (ccFV-TD) computational methodology for the purpose of studying microwave heating. Various state-of-the-art spatial and temporal discretisation methods employed to solve Maxwell's equations on multidimensional structured grid networks are investigated, and the dispersive and dissipative errors inherent in those techniques examined. Both staggered and unstaggered grid approaches are considered. Upwind schemes using a Riemann solver and intensity vector splitting are studied and evaluated. Staggered and unstaggered Leapfrog and Runge-Kutta time integration methods are analysed in terms of phase and amplitude error to identify which method is the most accurate and efficient for simulating microwave heating processes. The implementation and migration of typical electromagnetic boundary conditions. from staggered in space to cell-centred approaches also is deliberated. In particular, an existing perfectly matched layer absorbing boundary methodology is adapted to formulate a new cell-centred boundary implementation for the ccFV-TD solvers. Finally for microwave heating purposes, a comparison of analytical and numerical results for standard case studies in rectangular waveguides allows the accuracy of the developed methods to be assessed.