961 resultados para Environmental adaptation
Resumo:
Este trabalho teve como principal objetivo definir padrões fotográficos que representem o uso e a ocupação do solo da cabeceira de drenagem do Córrego Rico, localizada no Município de Monte Alto, Estado de São Paulo, para fins de adequação ambiental no que tange à legislação florestal brasileira. O mapeamento foi realizado utilizando técnicas de sensoriamento remoto e interpretação visual da imagem World View, seguida da digitalização da rede de drenagem e vegetações (naturais e agrícolas) no AutoCad, com auxílio de documentos e trabalho de campo. A área de estudo apresenta uma superfície de 2.141,53 ha, e os resultados permitiram constatar que a principal cultura é a cana-de-açúcar, com 546,34 ha, seguida de pastagens, com 251,22 ha, culturas perenes, com 191,71 ha, Eucalipto, com 57,31 ha, e a cebola, com 49,52 ha da área total, confirmando o avanço dos canaviais na região. A área possui 375,04 ha de áreas de preservação permanente (APPs), e desta superfície verificou-se que apenas 72,17 ha (19,24%) encontram-se compostos por vegetação arbórea ou mata, e destas 302,87 ha precisam ser enriquecidos e reflorestados com vegetação nativa da região, de acordo com legislação vigente. Os dados de área possibilitam futuras propostas de modelos de adequação ambiental para a microbacia, de acordo com a legislação ambiental vigente.
Resumo:
FUNDING UK Biotechnology and Biological Sciences Research Council grant BB/L027739/1 and BB/L000113/1 (to D.E.S.), the US National Institutes of Health grant 2R01GM078536 (to D.E.S.), and the US National Science Foundation grant IOB 0419695 (to D.E.S.) ACKNOWLEDGMENTS We wish to thank our collaborators Mary Lou Guerinot, Niko Geldner, and Christian Hermans for kindly allowing us to incorporate in this update unpublished data on BRUTUS, SGN1, and SGN3, respectively. We also thank Mary Lou Guerinot, Niko Geldner, Takehiro Kamiya, and the ERACAPS Root Barrier project for productive discussions relating to ionomics and the plant ionome. No conflict of interest declared.
Resumo:
Adaptation to replicate environments is often achieved through similar phenotypic solutions. Whether selection also produces convergent genomic changes in these situations remains largely unknown. The variable groundsel, Senecio lautus, is an excellent system to investigate the genetic underpinnings of convergent evolution, because morphologically similar forms of these plants have adapted to the same environments along the coast of Australia. We compared range-wide patterns of genomic divergence in natural populations of this plant and searched for regions putatively affected by natural selection. Our results indicate that environmental adaptation followed complex genetic trajectories, affecting multiple loci, implying both the parallel recruitment of the same alleles and the divergence of completely different genomic regions across geography. An analysis of the biological functions of candidate genes suggests that adaptation to coastal environments may have occurred through the recruitment of different genes participating in similar processes. The relatively low genetic convergence that characterizes the parallel evolution of S. lautus forms suggests that evolution is more constrained at higher levels of biological organization.
Resumo:
Root system characteristics are of fundamental importance to soil exploration and below-ground resource acquisition. Root architectural traits determine the in situ space-filling properties of a root system or root architecture. The growth angle of root axes is a principal component of root system architecture that has been strongly associated with acquisition efficiency in many crop species. The aims of this study were to examine the extent of genotypic variability for the growth angle and number of seminal roots in 27 current Australian and 3 CIMMYT wheat (Triticum aestivum L.) genotypes, and to quantify using fractal analysis the root system architecture of a subset of wheat genotypes contrasting in drought tolerance and seminal root characteristics. The growth angle and number of seminal roots showed significant genotypic variation among the wheat genotypes with values ranging from 36 to 56 (degrees) and 3 to 5 (plant-1), respectively. Cluster analysis of wheat genotypes based on similarity in their seminal root characteristics resulted in four groups. The group composition reflected to some extent the genetic background and environmental adaptation of genotypes. Wheat cultivars grown widely in the Mediterranean environments of southern and western Australia generally had wider growth angle and lower number of seminal axes. In contrast, cultivars with superior performance on deep clay soils in the northern cropping region, such as SeriM82, Baxter, Babax, and Dharwar Dry exhibited a narrower angle of seminal axes. The wheat genotypes also showed significant variation in fractal dimension (D). The D values calculated for the individual segments of each root system suggested that, compared to the standard cultivar Hartog, the drought-tolerant genotypes adapted to the northern region tended to distribute relatively more roots in the soil volume directly underneath the plant. These findings suggest that wheat root system architecture is closely linked to the angle of seminal root axes at the seedling stage. The implications of genotypic variation in the seminal root characteristics and fractal dimension for specific adaptation to drought environment types are discussed with emphasis on the possible exploitation of root architectural traits in breeding for improved wheat cultivars for water-limited environments.
Resumo:
High gene flow is considered the norm for most marine organisms and is expected to limit their ability to adapt to local environments. Few studies have directly compared the patterns of differentiation at neutral and selected gene loci in marine organisms. We analysed a transcriptome-derived panel of 281 SNPs in Atlantic herring (Clupea harengus), a highly migratory small pelagic fish, for elucidating neutral and selected genetic variation among populations and to identify candidate genes for environmental adaptation. We analysed 607 individuals from 18 spawning locations in the northeast Atlantic, including two temperature clines (5-12 °C) and two salinity clines (5-35‰). By combining genome scan and landscape genetic analyses, four genetically distinct groups of herring were identified: Baltic Sea, Baltic-North Sea transition area, North Sea/British Isles and North Atlantic; notably, samples exhibited divergent clustering patterns for neutral and selected loci. We found statistically strong evidence for divergent selection at 16 outlier loci on a global scale, and significant correlations with temperature and salinity at nine loci. On regional scales, we identified two outlier loci with parallel patterns across temperature clines and five loci associated with temperature in the North Sea/North Atlantic. Likewise, we found seven replicated outliers, of which five were significantly associated with low salinity across both salinity clines. Our results reveal a complex pattern of varying spatial genetic variation among outlier loci, likely reflecting adaptations to local environments. In addition to disclosing the fine scale of local adaptation in a highly vagile species, our data emphasize the need to preserve functionally important biodiversity.
Molecular adaptation of Ammonia Monooxygenase during independent pH specialization in Thaumarchaeota
Resumo:
Acknowledgements. This work was funded by Natural Environment Research Council Fellowship NE/J019151/1 and by institutional funding from within the University of Aberdeen.
Resumo:
Cultural inheritance can be considered as a mechanism of adaptation made possible by communication, which has reached its greatest development in humans and can allow long-term conservation or rapid change of culturally transmissible traits depending on circumstances and needs. Conservativeness/flexibility is largely modulated by mechanisms of sociocultural transmission. An analysis was carried out by testing the fit of three models to 47 cultural traits (classified in six groups) in 277 African societies. Model A (demic diffusion) is conservation over generations, as shown by correlations of cultural traits with language, used as a measure of historical connection. Model B (environmental adaptation) is measured by correlation to the natural environment. Model C (cultural diffusion) is the spread to neighbors by social contact in an epidemic-like fashion and was tested by measuring the tightness of geographic clustering of the traits. Most traits examined, in particular those affecting family structure and kinship, showed great conservation over generations, as shown by the fit of model A. They are most probably transmitted by family members. This is in agreement with the theoretical demonstration that cultural transmission in the family (vertical) is the most conservative one. Some traits show environmental effects, indicating the importance of adaptation to physical environment. Only a few of the 47 traits showed tight geographic clustering indicating that their spread to nearest neighbors follows model C, as is usually the case for transmission among unrelated people (called horizontal transmission).
Resumo:
Forest trees, like oaks, rely on high levels of genetic variation to adapt to varying environmental conditions. Thus, genetic variation and its distribution are important for the long-term survival and adaptability of oak populations. Climate change is projected to lead to increased drought and fire events as well as a northward migration of tree species, including oaks. Additionally, decline in oak regeneration has become increasingly concerning since it may lead to decreased gene flow and increased inbreeding levels. This will in turn lead to lowered levels of genetic diversity, negatively affecting the growth and survival of populations. At the same time, populations at the species’ distribution edge, like those in this study, could possess important stores of genetic diversity and adaptive potential, while also being vulnerable to climatic or anthropogenic changes. A survey of the level and distribution of genetic variation and identification of potentially adaptive genes is needed since adaptive genetic variation is essential for their long-term survival. Oaks possess a remarkable characteristic in that they maintain their species identity and specific environmental adaptations despite their propensity to hybridize. Thus, in the face of interspecific gene flow, some areas of the genome remain differentiated due to selection. This characteristic allows the study of local environmental adaptation through genetic variation analyses. Furthermore, using genic markers with known putative functions makes it possible to link those differentiated markers to potential adaptive traits (e.g., flowering time, drought stress tolerance). Demographic processes like gene flow and genetic drift also play an important role in how genes (including adaptive genes) are maintained or spread. These processes are influenced by disturbances, both natural and anthropogenic. An examination of how genetic variation is geographically distributed can display how these genetic processes and geographical disturbances influence genetic variation patterns. For example, the spatial clustering of closely related trees could promote inbreeding with associated negative effects (inbreeding depression), if gene flow is limited. In turn this can have negative consequences for a species’ ability to adapt to changing environmental conditions. In contrast, interspecific hybridization may also allow the transfer of genes between species that increase their adaptive potential in a changing environment. I have studied the ecologically divergent, interfertile red oaks, Quercus rubra and Q. ellipsoidalis, to identify genes with potential roles in adaptation to abiotic stress through traits such as drought tolerance and flowering time, and to assess the level and distribution of genetic variation. I found evidence for moderate gene flow between the two species and low interspecific genetic differences at most genetic markers (Lind and Gailing 2013). However, the screening of genic markers with potential roles in phenology and drought tolerance led to the identification of a CONSTANS-like (COL) gene, a candidate gene for flowering time and growth. This marker, located in the coding region of the gene, was highly differentiated between the two species in multiple geographical areas, despite interspecific gene flow, and may play a role in reproductive isolation and adaptive divergence between the two species (Lind-Riehl et al. 2014). Since climate change could result in a northward migration of trees species like oaks, this gene could be important in maintaining species identity despite increased contact zones between species (e.g., increased gene flow). Finally I examined differences in spatial genetic structure (SGS) and genetic variation between species and populations subjected to different management strategies and natural disturbances. Diverse management activities combined with various natural disturbances as well as species specific life history traits influenced SGS patterns and inbreeding levels (Lind-Riehl and Gailing submitted).
Resumo:
All organisms have the capacity to sense and respond to environmental changes. These signals often involve the use of second messengers such as cyclic adenosine monophosphate (cAMP). This second messenger is widely distributed among organisms and coordinates gene expression related with pathogenesis, virulence, and environmental adaptation. Genomic analysis in Mycobacterium tuberculosis has identified 16 adenylyl cyclases (AC) and one phosphodiesterase, which produce and degrade cAMP, respectively. To date, ten AC have been biochemically characterized and only one (Rv0386) has been found to be important during murine infection with M. tuberculosis. Here, we investigated the impact of hsp60-driven Rv2212 gene expression in Mycobacterium bovis Bacillus Calmette-Guerin (BCG) during growth in vitro, and during macrophage and mice infection. We found that hsp60-driven expression of Rv2212 resulted in an increased capacity of replication in murine macrophages but an attenuated phenotype in lungs and spleen when administered intravenously in mice. Furthermore, this strain displayed an altered proteome mainly affecting proteins associated with stress conditions (bfrB, groEL-2, DnaK) that could contribute to the attenuated phenotype observed in mice.
Resumo:
Because of the shortage of phycoerythrin (PE) gene sequences from rhodophytes, peBA encoding beta- and alpha-subunits of PE from three species of red algae (Ceramium boydenn, Halymenia sinensis, and Plocamium telfariae) were cloned and sequenced. Different selection forces have affected the evolution of PE lineages. 8.9 % of the codons were subject to positive selection within the PE lineages (excluding high-irradiance adapted Prochlorococcus). More than 40 % of the sites may be under positive selection, and nearly 20 % sites are weakly constraint sites in high-irradiance adapted Prochlorococcus. Sites most likely undergoing positive selection were found in the chromophore binding domains, suggesting that these sites have played important roles in environmental adaptation during PE diversification. Moreover, the heterogeneous distribution of positively selected sites along the PE gene was revealed from the comparison of low-irradiance adapted Prochlorococcus and marine Synechococcus, which firmly suggests that evolutionary patterns of PEs in these two lineages are significantly different.
Resumo:
The physiological response of plants to water deficits are known to vary according to the conditions of application of drought stress and the rate of development of leaf water deficits. At the whole plant level the effect of the water shess is usually perceived as a decrease in photosynthesis and growth, and is associated with alterations in C and N metabolism (McDonald and Davies, 1996). The decrease in water potential affects transpiration and hence xylem transport of nitrate or reduced N into growing regions. The response of the photo-synthetic apparatus either to water stress or rehydration seems to be dependent "on leaf age (O'Neill, 1983; Wolfe et al., 1988). Degradation of both thylakoid and stromal N-containing compounds can occur in response to water stress, recovery from which may pequire more than a week (Chaves, 1991).
Resumo:
Depuis les années 90, les Projets Intégrés de Conservation et Développement ont été présentés comme des modèles fonctionnels de développement durable pour un site spécifique dans une perspective de réalisation. Le but est d’intégrer les objectifs biologiques de la conservation aux objectifs sociaux et économiques du développement. Ces projets, qui répondent à de multiples dénominations et stratégies, sont implantés dans des contextes naturellement hétérogènes et dynamiques, où l’aménagement du territoire ne doit pas être un outil de planification étatique, désigné et imposé dans une logique conservationniste. Les aires protégées représentent une certaine vision du rapport entre l’être humain et la nature, apparue dans le contexte nord-américain avec la création des premiers grands parcs nationaux en 1870. Aujourd'hui, la forte volonté d'impliquer la population se heurte avec la difficulté de concilier la gestion de ces espaces avec les pratiques, les nécessités et les intérêts locaux. Le parc naturel Obô, qui occupe 30% du territoire de São Tomé et Principe, doit affronter la difficile intégration entre les représentations de la nature et les usages locaux avec les objectifs globaux des politiques conservationnistes, ainsi qu’avec les intérêts touristiques et économiques des investisseurs locaux et étrangers. Les représentations sociales de la nature, établissant une forme de connaissance pratique, déterminent la vision du monde et la relation qu'un certain groupe social peut avoir avec le territoire. Ainsi, chaque communauté possède ses propres mécanismes d'adaptation au milieu basés sur ce système représentationnel. Dans le cas des communautés sãotoméennes, la nature présente un caractère spirituel (associé à des croyances, des rites et des pratiques médicales traditionnelles) et utilitaire (la nature, à travers l'agriculture, la récolte ou la chasse, répond au besoin de subsistance). L’objectif de ce projet de thèse est donc de mieux comprendre la synergie existante entre savoir endogène et gestion de la biodiversité pour adapter l’aménagement du territoire à la réalité des populations qui y vivent.
Resumo:
La empresa es una organización en la que se coordinan los diferentes factores de productividad, recursos financieros, materias primas, mano de obra y capital mediante los cuales puede obtener sus fines. Durante los últimos años han surgido diversas propuestas teóricas que pretenden explicar los procesos de organización, el desarrollo y as diversas transformaciones que siguen las empresas. En estos procesos de coordinación y adaptación incide un factor clave para las organizaciones, el cual hace referencia a su personalidad. Para realizar un análisis crítico de personalidad de la empresa, se debe revisar la perspectiva psicológica del concepto de personalidad. En la psicología, este constructo se ha definido como el encargado de las diferencias individuales, es decir, representa aquellas propiedades de los individuos que expresan los patrones constantes en sus pensamientos, sentimientos y comportamientos. La personalidad describe la similitud que existe en las personas y sus diferencias, al igual que en sus estados de ánimo, desempeño, productividad, sus fracasos y conflictos dentro de las empresas. Las empresas no tienen estos procesos emocionales o motivacionales, razón por la cual, no podrían identificarse mediante estos procesos, pero sí pueden reconocerse por los modos de organizarse y relacionarse internamente y, también, por la forma de posicionarse en un mercado. La importancia de la personalidad de la empresa radica en que crea su valor y genera una exposición de su posicionamiento, además de permitirle mantenerse en el mercado a nivel competitivo, atraer clientes corporativos y mantener con vida sus negocios.
Resumo:
The role of lateral gene transfer (LGT) in prokaryotes has been shown to rapidly change the genome content, providing new gene tools for environmental adaptation. Features related to pathogenesis and resistance to strong selective conditions have been widely shown to be products of gene transfer between bacteria. The genomes of the gamma-proteobacteria from the genus Xanthomonas, composed mainly of phytopathogens, have potential genomic islands that may represent imprints of such evolutionary processes. In this work, the evolution of genes involved in the pathway responsible for arginine biosynthesis in Xanthomonadales was investigated, and several lines of evidence point to the foreign origin of the arg genes clustered within a potential operon. Their presence inside a potential genomic island, bordered by a tRNA gene, the unusual ranking of sequence similarity, and the atypical phylogenies indicate that the metabolic pathway for arginine biosynthesis was acquired through LGT in the Xanthomonadales group. Moreover, although homologues were also found in Bacteroidetes (Flavobacteria group), for many of the genes analyzed close homologues are detected in different life domains (Eukarya and Archaea), indicating that the source of these arg genes may have been outside the Bacteria clade. The possibility of replacement of a complete primary metabolic pathway by LGT events supports the selfish operon hypothesis and may occur only under very special environmental conditions. Such rare events reveal part of the history of these interesting mosaic Xanthomonadales genomes, disclosing the importance of gene transfer modifying primary metabolism pathways and extending the scenario for bacterial genome evolution.