879 resultados para Enteric-coating


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this highly novel study was to use hot-melt extrusion technology as an alternative process to enteric coating. In so doing, oral dosage forms displaying enteric properties may be produced in a continuous, rapid process, providing significant advantages over traditional pharmaceutical coating technology. Eudragit (R) L100-55, an enteric polymer, was pre-plasticized with triethyl citrate (TEC) and citric acid and subsequently dry-mixed with 5-aminosalicylic acid, a model active pharmaceutical ingredient (API), and an optional gelling agent (PVP (R) K30 or Carbopol (R) 971P). Powder blends were hot-melt extruded as cylinders, cut into tablets and characterised using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution testing conducted in both pH 1.2 and pH 6.8 buffers. Increasing the concentration of TEC significantly lowered the glass transition temperature (T,) of Eudragit (R) L100-55 and reduced temperatures necessary for extrusion as well as the die pressure. Moreover, citric acid (17% w/w) was shown to act as a solid-state plasticizer. HME tablets showed excellent gastro-resistance, whereas milled extrudates compressed into tablets released more than 10% w/w of the API in acidic media. Drug release from HME tablets was dependent upon the concentration of TEC, the presence of citric acid, PVP K30, and Carbopol (R) 971P in the matrix, and pH of the dissolution media. The inclusion of an optional gelling agent significantly reduced the erosion of the matrix and drug release rate at pH 6.8; however, the enteric properties of the matrix were lost due to the formation of channels within the tablet. Consequently this work is both timely and highly innovative and identifies for the first time a method of producing an enteric matrix tablet using a continuous hot-melt extrusion process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We previously demonstrated that a dry, room temperature stable formulation of a live bacterial vaccine was highly susceptible to bile, and suggested that this will lead to significant loss of viability of any live bacterial formulation released into the intestine using an enteric coating or capsule. We found that bile and acid tolerance is very rapidly recovered after rehydration with buffer or water, raising the possibility that rehydration in the absence of bile prior to release into the intestine might solve the problem of bile toxicity to dried cells. We describe here a novel formulation that combines extensively studied bile acid adsorbent resins with the dried bacteria, to temporarily adsorb bile acids and allow rehydration and recovery of bile resistance of bacteria in the intestine before release. Tablets containing the bile acid adsorbent cholestyramine release 250-fold more live bacteria when dissolved in a bile solution, compared to control tablets without cholestyramine or with a control resin that does not bind bile acids. We propose that a simple enteric coated oral dosage form containing bile acid adsorbent resins will allow improved live bacterial delivery to the intestine via the oral route, a major step towards room temperature stable, easily administered and distributed vaccine pills and other bacterial therapeutics

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cápsulas resistentes ao trato gastrintestinal são freqüentemente usadas com diversos propósitos. Estas cápsulas promovem eficácia farmacológica e farmacocinética de substâncias que são instáveis, ou irritantes para a mucosa gástrica. O diclofenaco de sódio é um antiinflamatório não-esteróide, que, por ser muito utilizado, despertou o interesse do setor magistral para sua manipulação. Porém, o fármaco é irritante para a mucosa gástrica, havendo necessidade de se empregar substâncias capazes de proteger o meio gástrico da ação do medicamento e uma alternativa para o setor magistral é a manipulação de cápsulas gastro-resistentes. Estas cápsulas devem resistir, sem alteração, à ação do suco gástrico, mas desagregar-se rapidamente no suco intestinal. O objetivo deste trabalho foi preparar cápsulas na concentração de 50 mg/cápsula de diclofenaco de sódio formiladas ou revestidas com acetoftalato de celulose ou com Eudragit L100 na máquina de revestimento entérico “Enteric Coating Machine” PCCA ou manualmente. Foram analisados os resultados considerando o perfil de dissolução das formulações. Observou-se que as cápsulas revestidas na máquina com Eudragit L100 e com acetoftalato em acetona revestidas na máquina e manualmente mostraram bons resultados quanto à dissolução, porém, não apresentaram boa aparência no caso das cápsulas de cor vermelha. Quanto às cápsulas revestidas com formol, estas apresentam boa aparência, mas não deram bons resultados no teste de dissolução.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Known for thousands of years, tuberculosis (TB) is the leading cause of mortality by a single infectious disease due to lack of patient adherence to available treatment regimens, the rising of multidrug resistant strains of TB (MDR-TB) and co-infection with HIV virus. Isoniazid and rifampicin are the most powerful bactericidal agents against M. tuberculosis. Because of that, this couple of drugs becomes unanimity in anti-TB treatment around the world. However, the rifampicin in acidic conditions in the stomach can be degraded rapidly, especially in the presence of isoniazid, which reduces the amount of available drug for absorption, as well as its bioavailability, contributing to the growing resistance to tuberculostatic drugs. Rifampicin is well absorbed in the stomach because of its high solubility between pH 1 and 2 and the gastric absorption of isoniazid is considered poor, therefore it is mostly intestinal. This work has as objective the development of gastro-resistant multiple-systems (granules and pellets) of isoniazid aiming to prevent the contact with rifampicin, with consequent degradation in acid stomach and modulate the release of isoniazid in the intestine. Granules of isoniazid were obtained by wet method using both alcoholic and aqueous solutions of PVP K-30 as aggregating and binder agent, at proportions of 5, 8 and 10%. The influence of the excipients (starch, cellulose or filler default) on the physical and technological properties of the granules was investigated. The pellets were produced by extrusionesferonization technique using isoniazid and microcrystalline cellulose MC 101 (at the proportion of 85:15) and aqueous solution of 1% Methocel as platelet. The pellets presented advantages over granular, such as: higher apparent density, smaller difference between apparent and compaction densities, smoother surface and, especially, smaller friability, and then were coated with an organic solution of Acrycoat L 100 ® in a fluidized bed. Different percentages of coating (15, 25 and 50%) were applied to the pellets which had their behavior evaluated in vitro by dissolution in acidic and basic medium. Rifampicin dissolution in the presence of uncoated and coated isoniazid pellets was evaluated too. The results indicate that the gastro resistance was only achieved with the greatest amount of coating and isoniazid is released successfully in basic step. The amount of rifampicin in the dissolution medium when the isoniazid pellets were not coated was lower than in the presence of enteric release pellets. Therefore, the polymer Acrycoat L 100 ® was efficient for coating with gastro-resistant function and can solve the problem of low bioavailability of rifampicin and help to reduce its dosage

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work pellets containing chitosan for colonic drug delivery were developed. The influence of the polysaccharide in the pellets was evaluated by swelling, drug dissolution and intestinal permeation studies. Drug-loaded pellets containing chitosan as swellable polymer were coated with an inner layer of Kollicoat® SR 30 D and an outer layer of the enteric polymer Kollicoat® MAE 30 DP in a fluidized-bed apparatus. Metronidazole released from pellets was assessed using Bio-Dis dissolution method. Swelling, drug release and intestinal permeation were dependent on the chitosan and the coating composition. The drug release data fitted well with the Weibull equation, indicating that the drug release was controlled by diffusion, polymer relaxation and erosion occurring simultaneously. The film coating was found to be the main factor controlling the drug release and the chitosan controlling the drug intestinal permeation. Coated pellets containing chitosan show great potential as a system for drug delivery to the colon. © 2012 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to prepare and characterize coated pellets for controlled drug delivery. The influence of chitosan (CS) in pellets was evaluated by swelling, in vitro drug release and intestinal permeation assays. Pellets were coated with an enteric polymer, Kollicoat (R) MAE 30 DP, in a fluidized-bed apparatus and the coating formulations were based on a factorial design. Metronidazole (MT) released from coated and uncoated pellets were assessed by dissolution method using Apparatus I. Intestinal permeation was evaluated by everted intestinal sac model in rats, used to study the absorption of MT from coated pellets containing CS or not through the intestinal tissue. Although the film coating avoided drug dissolution in gastric medium, the overall drug release and intestinal permeation were dependent on the presence of CS. Thus, pellets containing CS show potential as a system for controlled drug delivery. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shellac is the purified product of the natural polymer Lac. Shellac types, from different origins and with different ages, all purified by the solvent extraction process were compared in this study. Their physicochemical properties acid value, glass transition temperatures, color numbers and molecular sizes were determined. Metoprolol tartrate pellets were coated by air suspension coating with these different grades of shellac. Two coating levels 20% w/w and 25% w/w were applied and then subjected to in vitro dissolution testing. Enteric resistance was achieved for all tested brands for the two coating levels. At pH 6.8, 7.2 and 7.4, significant variations were obvious between the brands. rnMoreover the molecular size of shellac has a pronounced effect in that shellac types with larger molecular size show a higher and faster release than others, while the one with the smaller molecular size show the opposite effect on the release of metoprolol.rnIn this study commercially available ready for use aqueous shellac solutions (SSB AQUAGOLD), which are based on shellac SSB 57 (Dewaxed Orange Shellac, Bysakhi-Ber type refined in a solvent extraction process), with different manufacturing dates were used. rnTo improve the enteric coating properties of films from aqueous shellac solutions, different aqueous polymeric solutions of hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), carboyxmethyl cellulose (CMC), gum arabic and polysaccharides (Pullulan®) were used. These water soluble polymers will act as pore formers to enhance drug release from pellets coated with the combination of shellac and these polymers. The influence of these polymers on the gloss of the shellac films, mechanical properties of the films and drug release from metoprolol tartrate pellets were studied.rnThe potential of ethanol to alter the rate of drug release from shellac coated pellets was assessed by using a modified in vitro dose dumping in alcohol (DDA) method and the test concluded that shellac coated dosage forms can be co-administered with alcohol beverages containing ≤ 5% with no effect of alcohol on the shellac coat.rnPellets coated with shellac sodium salts, showed higher release rates than pellets coated with shellac as ammonium salt forms. rn

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work peptide antigens [ESAT-6,p45 in water (1ml, 1mg/ml)] have been adsorbed onto 10mg inorganic substrates (hydroxyapatite (MHA P201;P120, CHA), polystyrene, calcium carbonate and glass microspheres) and in vitro release characteristics were determined. The aim of formulation was to enhance the interaction of peptides with antigen presenting cells and to achieve rapid peptide release from the carrier compartment system in a mildly acidic environment. Hydroxyapatite microparticle P201 has a greater surface area and thus has the largest peptide adsorption compared to the P120. CHA gave a further higher adsorption due to larger surface area than that available on microparticles. These particles were incorporated into the BOVIGAMTM assay to determine if they improve the sensitivity. After overnight incubation the blood plasma was removed and the amount of IFN-g in each plasma sample was estimated. CHA and MHA P201 gave a significantly higher immune response at low peptide concentration compared to the free peptide, thus indicating that these systems can be used to evaluate Tuberculosis (TB) amongst cattle using the BOVIGAMTM assay. Badgers are a source of TB and pass infection to cattle. At the moment vaccination against TB in badgers is via the parenteral route and requires a trained veterinary surgeon as well as catching the badgers. This process is expensive and time consuming; consequently an oral delivery system for delivery of BCG vaccines is easier and cheaper. The initial stage involved addition of various surfactants and suspending agents to disperse BCG and the second stage involved testing for BCG viability. Various copolymers of Eudragit were used as enteric coating systems to protect BCG against the acidic environment of the stomach (SGF, 0.1M HCl pH 1.2 at 37oC) while dissolving completely in the alkaline environment of the small intestine (SIF, IM PBS solution pH 7.4 at 37oC). Eudragit L100 dispersed in 2ml PBS solution and 0.9ml Tween 80 (0.1%w/v) gave the best results remaining intact in SGF loosing only approximately 10-15% of the initial weight and dissolving completely within 3 hours. BCG was incorporated within the matrix formulation adjusted to pH 7 at the initial formulation stage containing PBS solution and Tween 80. It gave viability of x106 cfu/ml at initial formulation stage, freezing and freeze-drying stages. After this stage the matrix was compressed at 4 tons for 3 mins and placed in SGF for 2 hours and then in SIF until dissolved. The BCG viability dropped to x106 cfu/ml. There is potential to develop it further for oral delivery of BCG vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigates the production of alginate microcapsules, which have been coated with the polysaccharide chitosan, and evaluates some of their properties with the intention of improving the gastrointestinal viability of a probiotic (Bifidobacterium breve) by encapsulation in this system. The microcapsules were dried by a variety of methods, and the most suitable was chosen. The work described in this Article is the first report detailing the effects of drying on the properties of these microcapsules and the viability of the bacteria within relative to wet microcapsules. The pH range over which chitosan and alginate form polyelectrolyte complexes was explored by spectrophotometry, and this extended into swelling studies on the microcapsules over a range of pHs associated with the gastrointestinal tract. It was shown that chitosan stabilizes the alginate microcapsules at pHs above 3, extending the stability of the capsules under these conditions. The effect of chitosan exposure time on the coating thickness was investigated for the first time by confocal laser scanning microscopy, and its penetration into the alginate matrix was shown to be particularly slow. Coating with chitosan was found to increase the survival of B. breve in simulated gastric fluid as well as prolong its release upon exposure to intestinal pH.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2 h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work a generally applicable method for the preparation of mucoadhesive micropellets of 250 to 600µm diameter is presented using rotor processing without the use of electrolytes. The mucoadhesive micropellets were developed to combine the advantages of mucoadhesion and microparticles. It was possible to produce mucoadhesive micropellets based on different mucoadhesive polymers Na-CMC, Na-alginate and chitosan. These micropellets are characterized by a lower friability (6 to 17%) when compared to industrial produced cellulose pellets (Cellets®) (41.5%). They show great tapped density and can be manufactured at high yields. The most influencing variables of the process are the water content at the of the end spraying period, determined by the liquid binder amount, the spraying rate, the inlet air temperature, the airflow and the humidity of the inlet air and the addition of the liquid binder, determined by the spraying rate, the rotor speed and the type of rotor disc. In a subsequent step a fluidized bed coating process was developed. It was possible to manifest a stable process in the Hüttlin Mycrolab® in contrast to the Mini-Glatt® apparatus. To reach enteric resistance, a 70% coating for Na-CMC micropellets, an 85% for chitosan micropellets and a 140% for Na-alginate micropellets, based on the amount of the starting micropellets, was necessary. Comparative dissolution experiments of the mucoadhesive micropellets were performed using the paddle apparatus with and without a sieve inlay, the basket apparatus, the reciprocating cylinder and flow-through cell. The paddle apparatus and the modified flow-through cell method turned out to be successful methods for the dissolution of mucoadhesive micropellets. All dissolution profiles showed an initial burst release followed by a slow release due to diffusion control. Depending on the method, the dissolution profiles changed from immediate release to slow release. The dissolution rate in the paddle apparatus was mainly influenced by the agitation rate whereas the flow-through cell pattern was mainly influenced by the particle size. Also, the logP and the HLB values of different emulsifiers were correlated to transfer HLB values of excipients into logP values and logP values of API´s into HLB values. These experiments did not show promising results. Finally, it was shown that manufacture of mucoadhesive micropellets is successful resulting in product being characterized by enteric resistency combined with high yields and convincing morphology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramic membranes are of particular interest in many industrial processes due to their ability to function under extreme conditions while maintaining their chemical and thermal stability. Major structural deficiencies under conventional fabrication approach are pin-holes and cracks, and the dramatic losses of flux when pore sizes are reduced to enhance selectivity. We overcome these structural deficiencies by constructing hierarchically structured separation layer on a porous substrate using larger titanate nanofibres and smaller boehmite nanofibres. This yields a radical change in membrane texture. The differences in the porous supports have no substantial influences on the texture of resulting membranes. The membranes with top layer of nanofibres coated on different porous supports by spin-coating method have similar size of the filtration pores, which is in a range of 10–100 nm. These membranes are able to effectively filter out species larger than 60 nm at flow rates orders of magnitude greater than conventional membranes. The retention can attain more than 95%, while maintaining a high flux rate about 900 L m-2 h. The calcination after spin-coating creates solid linkages between the fibres and between fibres and substrate, in addition to convert boehmite into -alumina nanofibres. This reveals a new direction in membrane fabrication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The purpose of this paper is to report the resistance of plasma-sprayed titanium dioxide (TiO2) nanostructured coatings in a corrosive environment.----- Design/methodology/approach: Weight loss studies are performed according to ASTM G31 specifications in 3.5?wt% NaCl. Electrochemical polarization resistance measurements are made according to ASTM G59-91 specifications. Corrosion resistance in a humid and corrosive environment is determined by exposing the samples in a salt spray chamber for 100?h. Microstructural studies are carried out using an atomic force microscope and scanning electron microscope.----- Findings: The nanostructured TiO2 coatings offer good resistance to corrosion, as shown by the results of immersion, electrochemical and salt spray studies. The corrosion resistance of the coating is dictated primarily by the geometry of splat lamellae, density of unmelted nanoparticles, magnitude of porosity and surface homogeneity.----- Practical implications: The TiO2 nanostructured coatings show promising potential for use as abrasion, wear-resistant and thermal barrier coatings for service in harsh environments.----- Originality/value: The paper relates the corrosion resistance of nanostructured TiO2 coatings to their structure and surface morphology.