989 resultados para Enrichment factor
Resumo:
Sediment samples from 13 sampling sites in Deception Bay, Australia were analysed for the presence of heavy metals. Enrichment factors, modified contamination indices and Nemerow pollution indices were calculated for each sampling site to determine sediment quality. The results indicate significant pollution of most sites by lead (average enrichment factor (EF) of 13), but there is also enrichment of arsenic (average EF 2.3), zinc (average EF 2.7) and other heavy metals. The modified degree of contamination indices (average 1.0) suggests that there is little contamination. By contrast, the Nemerow pollution index (average 5.8) suggests that Deception Bay is heavily contaminated. Cluster analysis was undertaken to identify groups of elements. Strong correlation between some elements and two distinct clusters of sampling sites based on sediment type was evident. These results have implications for pollution in complex marine environments where there is significant influx of sand and sediment into an estuarine environment.
Resumo:
A geochemical study of Bohai Bay surface sediments was carried out to analyze the potential harmful element (PHE: Ge, Mo, In, Sn, Sb,Te, Tl, Bi and V) concentrations, transportation and deposition, enrichment factors and sources. Germanium, Mo, In, Sn, Sb, Te, Tl, Bi and V concentrations in the surface sediments were: 1.43-1.71, 0.52-1.43, 0.04-0.12, 2.77-4.14, 1.14-2.29, 0.027-0.085, 0.506-0.770, 0.27-0.63 and 70.35-115.90 mu g/g, respectively. The distributions of total PHE concentrations, together with sequential extraction analyses, showed that the PHEs were mainly due to natural inputs from the continental weathering delivered to the bay by rivers and atmospheric transportation and deposition. However, high Mo, Sb, Te, Bi and V occurred in non-residual fractions, suggesting some anthropogenic inputs in addition to the natural inputs. Besides sources, the distributions of PHEs were influenced by the coupling of physical, chemical and biological processes. Enrichment factor (EF) was computed for each site for each element in order to assess the polluting elements and the degree of pollution at each site. Results revealed that the EFs were generally lower than 1.0, particularly for Ge, Mo, In, Sn, Tl and V; however, the EFs were higher (>1.5), particularly for Sb, Te and Bi, revealing moderate contamination. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Frost flowers have been proposed to be the major source of sea-salt aerosol to the atmosphere during polar winter and a source of reactive bromine during polar springtime. However little is known about their bulk chemical composition or microstructure, two important factors that may affect their ability to produce aerosols and provide chemically reactive surfaces for exchange with the atmosphere. Therefore, we chemically analyzed 28 samples of frost flowers and parts of frost flowers collected from sea ice off of northern Alaska. Our results support the proposed mechanism for frost flower growth that suggests water vapor deposition forms an ice skeleton that wicks brine present on newly grown sea ice. We measured a high variability in sulfate enrichment factors (with respect to chloride) in frost flowers and seawater from the vicinity of freezing sea ice. The variability in sulfate indicates that mirabilite precipitation (Na2SO4 x 10 H2O) occurs during frost flower growth. Brine wicked up by frost flowers is typically sulfate depleted, in agreement with the theory that frost flowers are related to sulfate-depleted aerosol observed in Antarctica. The bromide enrichment factors we measured in frost flowers are within error of seawater composition, constraining the direct reactive losses of bromide from frost flowers. We combined the chemical composition measurements with temperature observations to create a conceptual model of possible scenarios for frost flower microstructure development.