976 resultados para Energy measurements
Resumo:
This paper presents a practical experimentation for comparing reactive/non-active energy measures, considering three-phase four-wire non-sinusoidal and unbalanced circuits, involving five different commercial electronic meters. The experimentation set provides separately voltage and current generation, each one with any waveform involving up to fifty-first harmonic components, identically compared with acquisitions obtained from utility. The experimental accuracy is guaranteed by a class A power analyzer, according to IEC61000-4-30 standard. Some current and voltage combination profiles are presented and confronted with two different references of reactive/non-active calculation methodologies; instantaneous power theory and IEEE 1459-2010. The first methodology considers the instantaneous power theory, present into the advanced mathematical internal algorithm from WT3000 power analyzer, and the second methodology, accomplish with IEEE 1459-2010 standard, uses waveform voltage and current acquisition from WT3000 as input data for a virtual meter developed on Mathlab/Simulink software. © 2012 IEEE.
Resumo:
Over the past several years the topics of energy consumption and energy harvesting have gained significant importance as a means for improved operation of wireless sensor and mesh networks. Energy-awareness of operation is especially relevant for application scenarios from the domain of environmental monitoring in hard to access areas. In this work we reflect upon our experiences with a real-world deployment of a wireless mesh network. In particular, a comprehensive study on energy measurements collected over several weeks during the summer and the winter period in a network deployment in the Swiss Alps is presented. Energy performance is monitored and analysed for three system components, namely, mesh node, battery and solar panel module. Our findings cover a number of aspects of energy consumption, including the amount of load consumed by a mesh node, the amount of load harvested by a solar panel module, and the dependencies between these two. With our work we aim to shed some light on energy-aware network operation and to help both users and developers in the planning and deployment of a new wireless (mesh) network for environmental research.
Resumo:
Sulfonic acid functionalised periodic mesoporous organosilicas (PrSO3 H-PMOs) with tunable hydrophobicity were synthesised via a surfactant-templating route, and characterised by porosimetry, TEM, XRD, XPS, inverse gas chromatography (IGC) and ammonia pulse chemisorption. IGC reveals that incorporation of ethyl or benzyl moieties into a mesoporous SBA-15 silica framework significantly increases the non-specific dispersive surface energy of adsorption for alkane adsorption, while decreasing the free energy of adsorption of methanol, reflecting increased surface hydrophobicity. The non-specific dispersive surface energy of adsorption of PMO-SO3H materials is strongly correlated with their activity towards palmitic acid esterification with methanol, demonstrating the power of IGC as an analytical tool for identifying promising solid acid catalysts for the esterification of free fatty acids. A new parameter [-ΔGCNP-P], defined as the per carbon difference in Gibbs free energy of adsorption between alkane and polar probe molecules, provides a simple predictor of surface hydrophobicity and corresponding catalyst activity in fatty acid esterification. © 2014 Elsevier B.V.
Resumo:
The need for standardization of the measured blow count number N-spt into a normalized reference energy value is now fully recognized. The present paper extends the existing theoretical approach using the wave propagation theory as framework and introduces an analysis for large displacements enabling the influence of rod length in the measured N-spt values to be quantified. The study is based on both calibration chamber and field tests. Energy measurements are monitored in two different positions: below the anvil and above the sampler. Both experimental and numerical results demonstrate that whereas the energy delivered into the rod stem is expressed as a ratio of the theoretical free-fall energy of the hammer, the effective sampler energy is a function of the hammer height of fall, sampler permanent penetration, and weight of both hammer and rods. Influence of rod length is twofold and produces opposite effects: wave energy losses increase with increasing rod length and in a long rod composition the gain in potential energy from rod weight is significant and may partially compensate measured energy losses. Based on this revised approach, an analytical solution is proposed to calculate the energy delivered to the sampler and efficiency coefficients are suggested to account for energy losses during the energy transference process.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different geometries of chip breaker were applied on dry tests. A special milling tool holder with only one cutting edge was developed and the machining forces needed to calculate the specific cutting energy were recorded using a piezoelectric 4-component dynamometer. Workpiece roughness and chip formation process were also evaluated. The results showed that the specific cutting energy decreased 15.5% when cutting speed was increased up to 700%. An increase of 1 °in tool chip breaker chamfer angle lead to a reduction in the specific cutting energy about 13.7% and 28.6% when machining at HSC and conventional cutting speed respectively. Furthermore the workpiece roughness values evaluated in all test conditions were very low, closer to those of typical grinding operations (∼0.20 μm). Probable adiabatic shear occurred on chip segmentation at HSC Copyright © 2007 by ABCM.
Resumo:
Electric propulsion is now a succeful method for primary propulsion of deep space long duration missions and for geosyncronous satellite attitude control. Closed Drift Thruster, so called Hall Thruster or SPT (Stationary Plasma Thruster), was primarily conceived in USSR (the ancient Soviet Union) and, since then, it has been developed by space agencies, space research institutes and industries in several countries such as France, USA, Israel, Russian Federation and Brazil. In this work we present the main features of the Permanent Magnet Hall Thruster (PMHT) developed at the Plasma Laboratory of the University of Brasilia. The idea of using an array of permanent magnets, instead of an electromagnet, to produce a radial magnetic field inside the plasma channel of the thruster is very significant. It allows the development of a Hall Thruster with power consumption low enough to be used in small and medium size satellites. Description of a new vacuum chamber used to test the second prototype of the PMHT (PHALL II) will be given. PHALL II has an aluminum plasma chamber and is smaller with 15 cm diameter and will contain rare earth magnets. We will show plasma density and temperature space profiles inside and outside the thruster channel. Ion temperature measurements based on Doppler broadening of spectral lines and ion energy measurements are also shown. Based on the measured plasma parameters we constructed an aptitude figure of the PMHT. It contains the specific impulse, total thrust, propellant flow rate and power consumption necessary for orbit raising of satellites. Based on previous studies of geosyncronous satellite orbit positioning we perform numerical simulations of satellite orbit raising from an altitude of 700 km to 36000 km using a PMHT operating in the 100 mN - 500 mN thrust range. In order to perform these calculations integration techniques were used. The main simulation paraters were orbit raising time, fuel mass, total satellite mass, thrust and exaust velocity. We conclude comparing our results with results obtainned with known space missions performed with Hall Thrusters. © 2008 by the American Institute of Aeronautics and Astronautics, Inc.
Resumo:
This paper presents some methodologies for reactive energy measurement, considering three modern power theories that are suitable for three-phase four-wire non-sinusoidal and unbalanced circuits. The theories were applied in some profiles collected in electrical distribution systems which have real characteristics for voltages and currents measured by commercial reactive energy meters. The experimental results are presented in order to analyze the accuracy of the methodologies, considering the standard IEEE 1459-2010 as a reference. Finally, for additional comparisons, the theories will be confronted with the modern Yokogawa WT3000 energy meter and three samples of a commercial energy meter through an experimental setup. © 2011 IEEE.
Resumo:
Energy efficient policies are being applied to network protocols, devices and classical network management systems. Researchers have already studied in depth each of those fields, including for instance a long monitoring processes of various number of individual ICT equipment from where power models are constructed. With the development of smart meters and emerging protocols such as SNMP and NETCONF, currently there is an open field to couple the power models, translated to the expected behavior, with the realtime energy measurements. The goal is to derive a comparison on the power data between both of the processes in the direction of detection for possible deviations on the expected results. The logical assumption is that a fault in the usage of a particular device will not only increase its own energy usage, but also may cause additional consumption on the other devices part of the network. A platform is developed to monitor and analyze the retrieved power data of a simulated enterprise ICT infrastructure. Moreover, smart algorithms are developed which are aware of the different states that are occurring on each device during their typical use phase, as well as to detect and isolate possible anomalies. The produced results are obtained and validated with the use of Cisco switches and routers, Dell Precision stations and Raritan PDU as part of the monitored infrastructure.
Resumo:
Univariate statistical control charts, such as the Shewhart chart, do not satisfy the requirements for process monitoring on a high volume automated fuel cell manufacturing line. This is because of the number of variables that require monitoring. The risk of elevated false alarms, due to the nature of the process being high volume, can present problems if univariate methods are used. Multivariate statistical methods are discussed as an alternative for process monitoring and control. The research presented is conducted on a manufacturing line which evaluates the performance of a fuel cell. It has three stages of production assembly that contribute to the final end product performance. The product performance is assessed by power and energy measurements, taken at various time points throughout the discharge testing of the fuel cell. The literature review performed on these multivariate techniques are evaluated using individual and batch observations. Modern techniques using multivariate control charts on Hotellings T2 are compared to other multivariate methods, such as Principal Components Analysis (PCA). The latter, PCA, was identified as the most suitable method. Control charts such as, scores, T2 and DModX charts, are constructed from the PCA model. Diagnostic procedures, using Contribution plots, for out of control points that are detected using these control charts, are also discussed. These plots enable the investigator to perform root cause analysis. Multivariate batch techniques are compared to individual observations typically seen on continuous processes. Recommendations, for the introduction of multivariate techniques that would be appropriate for most high volume processes, are also covered.
Resumo:
Luotettavien energiamittauspalvelujen tarjoaminen vaatii mittauksien ja niihin liittyvien työvaiheiden tarkan dokumentoinnin ja ohjeistuksen. Sähkötaseiden hallinnassa ja sel-vityksessä käytettävien mittaustietojen määrä on suuri. Dokumentointijärjestelmä on välttämätön mittaustietojen hallitsemiseksi. Sujuva työvaiheiden suorittaminen vaatii niiden kartoittamisen ja sen pohjalta tehdyn ohjeistamisen. Diplomityö voidaan jakaa neljään osaan. Aluksi selvitetään sähköenergiamittausten käyttöä tasehallinnassa ja -selvityksessä. Siihen liittyen tehdään selvitys myös mittaus-velvollisuuksista sekä mittausten tarvitsijoista. Toisessa osassa tutkitaan, miten mittaustieto siirretään jännite- ja virtamuuntajilta ener-gianhallintajärjestelmään, ja mitä työvaiheita on suoritettava ennen kuin mittaustieto voidaan ohjata asiakkaalle tai jatkokäsittelyyn. Kolmas osa muodostuu mittaustietokannan kehittämisestä Microsoft Access-tietokantaohjelmalla. Tietokantaan keskitetään kaikki mahdollinen mittauksiin liittyvä tieto. Tietokanta helpottaa monia mittauksiin liittyviä selvitystehtäviä, sillä siitä voidaan hakea tietoa monin eri hakukriteerein. Neljännessä osassa tarkastellaan mittauspalvelun toiminnassa esiin tulleita epäkohtia ja esitetään niille korjausehdotukset.
Resumo:
Building Integrated Photovoltaics (BIPV) are considered as the future of photovoltaic (PV) technology. The advantage of BIPV system is its multi-functionality; they fulfil the functions of a building envelope with the added benefit of generating power by replacing the traditional roofing and façade materials with PV that generate power. In this thesis, different types of PV cells and modules have been described in detail with their efficiencies and usage trends in the last decade. The different BIPV products for roof and façade are discussed in detail giving several examples. The electricity generation potential of BIPV in selected countries is compared with their actual electricity consumption. Further, the avoided greenhouse gas (GHG) emissions associated with electricity generation from traditional sources and transportation and distribution (T&D) losses are calculated. The results illustrate huge savings in GHGs. In BIPV different types of façade and backsheets are used. In this thesis, selected backsheets and façade were characterized in terms of their surface structure identification using infrared spectroscopy (FTIR-ATR), scanning electron microscopy with energy dispersive X-ray (SEM-EDX) and physical characterization using surface energy measurements. By using FTIR-ATR, surface polymeric materials were identified and with SEM-EDX, identification of the surface elements was possible. Surface energy measurements were useful in finding the adhesives and knowing the surface energies of the various backsheets and façade. The strength of adhesion between the facade and backsheets was studied using peel test. Four different types of adhesives were used to study the fracture pattern and peel tests values to identify the most suitable adhesive. It was found out that pretreatment increased the adhesive strength significantly.
Resumo:
In this work it was investigated the effect of the exposure to different plasmas on the wettability of silicone samples. We have observed that oxygen. argon, and hydrogen glow discharges are quite effective in reducing the water contact angle of such polymer. However, indifferently to efficiency of the treatment, practically all the modified surfaces recovered great part of their original hydrophobicity. We have investigated this hydrophobic recovery using surface energy measurements and theoretical simulations based on the exponential decay of the population of polar groups on the surface. According to our results such recovery can be attributed to the decrease of polar species at the interface water-polymer surface.
Resumo:
The electrical degradation phenomena of zinc oxide-based varistors were studied using a high-energy current pulse and a.c. polarization at different temperatures. Activation energy measurements during the degradation process showed that these phenomena are associated with diffusion and that the diffusion-controlling species are slower than Zn., For degradation promoted by current pulses of 8×20 μs, the Schottky potential barrier deformation was measured. A decrease in height and width of the potential barrier due to the reduction of surface states density, N s, without a significant change in donor density, N d, was observed. To explain these results, a modification of the unstable components model is proposed for the potential barrier in which the degradation is due to oxi-reduction reactions between atomic defects. These reactions promote the elimination of zinc vacancies and/or adsorbed oxygen on the grain boundaries. © 1992 Chapman & Hall.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)