987 resultados para Energy Requirement


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy is a key input into the fish harvesting process. Efficient use of energy helps in reducing operational costs and environmental impact, while increasing profits. Energy optimisation is an important aspect of responsible fishing as enunciated in the Code of Conduct for Responsible Fisheries. Gross Energy Requirement (GER) is the sum of all non-renewable energy resources consumed in making available a product or service and is expressed in energy units per physical unit of product or service delivered. GER is a measure of intensity of non-renewable resource use and it reflects the amount of depletion of earth’s inherited store of non-renewable energy in order to create and make available a product or service. In this study, GER in fish harvesting up to the point of landing is estimated in selected fish harvesting systems in the small-mechanised sectors of Indian fisheries and compared with reported results from selected non mechanised and motorised fishing systems to reflect the situation during 1997-1998. Among the fish harvesting systems studied, GER t fish-1 ranged from 5.54 and 5.91 GJ, respectively, for wooden and steel purse seiners powered by 156 hp engines; 6.40 GJ for wooden purse seiner with 235 hp engine; 25.18 GJ for mechanised gillnet/line fishing vessel with 89 hp engines; to 31.40 and 36.97 GJ, respectively, for wooden and steel trawlers powered by 99-106 hp engines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Present work deals with the studies on energy requirement and convervation in selected fish harvesting systems.Modem fishing is one of the most energy intensive methods of food production. Fossil fuels used for motorised and mechanised fishing are nonrenewable and limited. Most of the environmental problems that confront mankind today are connected to the use of energy in one way or another. Code of Conduct for Responsible Fisheries (FAO, 1995) highlights the need for efficient use of energy in the fisheries sector. Information on energy requirement in different fish harvesting systems, based on the principles of energy analysis, is entirely lacking in respect of Indian fisheries. Such an analysis will provide an unbiased decision making support for maximising the yield per unit of non-renewable energy use, from different fishery resource systems, by rational deployment of harvesting systems. In the present study, results of investigations conducted during 1997-2000 on energy requirement in selected fish harvesting systems and approaches to energy conservation in fishing, are presented along with a detailed description of the fish harvesting systems and their operation. The content of the thesis is organised into 8 Chapters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten isonitrogenous casein-gelatin-based diets were formulated to contain five estimated metabolizable energy concentrations (10.92, 12.29, 13.63, 14.82 and 16.16 kJ g -1) at two carbohydrate-to-lipid ratios (CHO : L, 5.3 and 12.8, g : g) in a 5 × 2 factorial arrangement. Each diet was assigned to triplicate groups of 11 piracanjuba fingerlings (5.25 ± 0.14 g) and fed to apparent satiation twice a day for 90 days. Higher daily weight gain was obtained by fish fed the 13.63 kJ g -1 diets for both CHO : L ratios. There was a significant reduction of feed consumption when dietary energy concentration increased above 13.63 kJ g -1. Feed conversion ratio and apparent net energy retention improved as dietary energy increased. Apparent net protein retention tended to be lower in the highest and lowest dietary energy concentrations. The results suggest that dietary lipid energy was more efficiently utilized by piracanjuba fingerlings than carbohydrate energy. Body composition and hepatosomatic index (HSI) were not influenced by dietary CHO : L ratio. However, an increase in dietary energy concentration beyond 13.63 kJ g -1 resulted in a significant increment in lipid deposition, while body moisture and HSI decreased. Our findings indicate that at 300 g kg -1 dietary crude protein, a CHO : L ratio of 5.3 is recommended for piracanjuba, and the required energy is either 13.63 kJ g -1 if raised for aquaculture or 14.82 kJ g -1 if destined to stock enhancement. © 2006 Blackwell Publishing Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mimeographed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is a condensed version of the final report of a detailed field study of rural energy consumption patterns in six villages located west of Bangalore in the dry belt of Karnataka State in India. The study was carried out in two phases; first, a pilot study of four villages and second, the detailed study of six villages, the populations of which varied from around 350 to about 950. The pilot survey ended in late 1976, and most of the data was collected for the main project in 1977. Processing of the collected data was completed in 1980. The aim was to carry out a census survey, rather than a sample study. Hence, considerable effort was expended in production of both a suitable questionnaire, ensuring that all respondents were contacted, and devising methods which would accurately reflect the actual energy use in various energy-utilising activities. In the end, 560 households out of 578 (97%) were surveyed. The following ranking was found for the various energy sources in order of average percentage contribution to the annual total energy requirement: firewood, 81·6%; human energy, 7·7%; animal energy, 2·7%; kerosene, 2·1%; electricity, 0·6% and all other sources (rice husks, agro-wastes, coal and diesel fuel), 5·3%. In other words commercial fuels made only a small contribution to the overall energy use. It should be noted that dung cakes are not burned in this region. The average energy use pattern, sector by sector, again on a percentage basis, was as follows: domestic, 88·3%; industry, 4·7%; agriculture, 4·3%; lighting, 2·2% and transport, 0·5%. The total annual per capita energy consumption was 12·6 ± 1·2 GJ, giving an average annual household consumption of around 78·6 GJ.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper is a condensed version of the final report of a detailed field study of rural energy consumption patterns in six villages located west of Bangalore in the dry belt of Karnataka State in India. The study was carried out in two phases; first, a pilot study of four villages and second, the detailed study of six villages, the populations of which varied from around 350 to about 950. The pilot survey ended in late 1976, and most of the data was collected for the main project in 1977. Processing of the collected data was completed in 1980. The aim was to carry out a census survey, rather than a sample study. Hence, considerable effort was expended in production of both a suitable questionnaire, ensuring that all respondents were contacted, and devising methods which would accurately reflect the actual energy use in various energy-utilising activities. In the end, 560 households out of 578 (97%) were surveyed. The following ranking was found for the various energy sources in order of average percentage contribution to the annual total energy requirement: firewood, 81A·6%; human energy, 7A·7%; animal energy, 2A·7%; kerosene, 2A·1%; electricity, 0A·6% and all other sources (rice husks, agro-wastes, coal and diesel fuel), 5A·3%. In other words commercial fuels made only a small contribution to the overall energy use. It should be noted that dung cakes are not burned in this region. The average energy use pattern, sector by sector, again on a percentage basis, was as follows: domestic, 88A·3%; industry, 4A·7%; agriculture, 4A·3%; lighting, 2A·2% and transport, 0A·5%. The total annual per capita energy consumption was 12A·6 A± 1A·2 GJ, giving an average annual household consumption of around 78A·6 GJ.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Energy plays a prominent role in human society. As a result of technological and industrial development,the demand for energy is rapidly increasing. Existing power sources that are mainly fossil fuel based are leaving an unacceptable legacy of waste and pollution apart from diminishing stock of fuels.Hence, the focus is now shifted to large-scale propagation of renewable energy. Renewable energy technologies are clean sources of energy that have a much lower environmental impact than conventional energy technologies. Solar energy is one such renewable energy. Most renewable energy comes either directly or indirectly from the sun. Estimation of solar energy potential of a region requires detailed solar radiation climatology, and it is necessary to collect extensive radiation data of high accuracy covering all climatic zones of the region. In this regard, a decision support system (DSS)would help in estimating solar energy potential considering the region’s energy requirement.This article explains the design and implementation of DSS for assessment of solar energy. The DSS with executive information systems and reporting tools helps to tap vast data resources and deliver information. The main hypothesis is that this tool can be used to form a core of practical methodology that will result in more resilient in time and can be used by decision-making bodies to assess various scenarios. It also offers means of entering, accessing, and interpreting the information for the purpose of sound decision making.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ring seines are lightly constructed purse seines adapted for operation in the traditional sector. Fish production and energy requirement in the ring seine operations, off Cochin, Kerala, India are discussed in this paper, based on data collected during 1997- 1998. The results reflect the Gross Energy Requirement (GER) situation that existed during 1997-1998. Mean catch per ring seiner per year worked out to be 211.9 t of which sardines (Sardinella spp.) constituted 44.3%, followed by Indian mackerel (Rastrelliger kanagurta) 29.7%, carangids 11.4%, penaeid prawns 2.2%, pomfrets 1.1% and miscellaneous fish 11.3%. Total energy inputs into the ring seine operations were estimated to be 1300.8 GJ. Output by way of fish production was determined to be 931.85 GJ. GER is the sum of all non-renewable energy resources consumed in making available a product or service and is a measure of intensity of non-renewable resource use. GER per tonne of fish landed by ring seiners was estimated to be 6.14. Among the operational inputs, kerosene constituted 73.4% of the GER, followed by petrol (12.7%), diesel (6.7%) and lubricating oil (2.4%). Fishing gear contributed 3.8%, engine 0.8% and fishing craft 0.3% of the GER. Energy ratio for ring seining was 0.72 and energy intensity 1.40.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grass-based diets are of increasing social-economic importance in dairy cattle farming, but their low supply of glucogenic nutrients may limit the production of milk. Current evaluation systems that assess the energy supply and requirements are based on metabolisable energy (ME) or net energy (NE). These systems do not consider the characteristics of the energy delivering nutrients. In contrast, mechanistic models take into account the site of digestion, the type of nutrient absorbed and the type of nutrient required for production of milk constituents, and may therefore give a better prediction of supply and requirement of nutrients. The objective of the present study is to compare the ability of three energy evaluation systems, viz. the Dutch NE system, the agricultural and food research council (AFRC) ME system, and the feed into milk (FIM) ME system, and of a mechanistic model based on Dijkstra et al. [Simulation of digestion in cattle fed sugar cane: prediction of nutrient supply for milk production with locally available supplements. J. Agric. Sci., Cambridge 127, 247-60] and Mills et al. [A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation and application. J. Anim. Sci. 79, 1584-97] to predict the feed value of grass-based diets for milk production. The dataset for evaluation consists of 41 treatments of grass-based diets (at least 0.75 g ryegrass/g diet on DM basis). For each model, the predicted energy or nutrient supply, based on observed intake, was compared with predicted requirement based on observed performance. Assessment of the error of energy or nutrient supply relative to requirement is made by calculation of mean square prediction error (MSPE) and by concordance correlation coefficient (CCC). All energy evaluation systems predicted energy requirement to be lower (6-11%) than energy supply. The root MSPE (expressed as a proportion of the supply) was lowest for the mechanistic model (0.061), followed by the Dutch NE system (0.082), FIM ME system (0.097) and AFRCME system(0.118). For the energy evaluation systems, the error due to overall bias of prediction dominated the MSPE, whereas for the mechanistic model, proportionally 0.76 of MSPE was due to random variation. CCC analysis confirmed the higher accuracy and precision of the mechanistic model compared with energy evaluation systems. The error of prediction was positively related to grass protein content for the Dutch NE system, and was also positively related to grass DMI level for all models. In conclusion, current energy evaluation systems overestimate energy supply relative to energy requirement on grass-based diets for dairy cattle. The mechanistic model predicted glucogenic nutrients to limit performance of dairy cattle on grass-based diets, and proved to be more accurate and precise than the energy systems. The mechanistic model could be improved by allowing glucose maintenance and utilization requirements parameters to be variable. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The suitability of models specifically re-parameterized for analyzing energy balance data relating metabolizable energy intake to growth rate has recently been investigated in male broilers. In this study, the more adequate of those models was applied to growing turkeys to provide estimates of their energy needs for maintenance and growth. Three functional forms were used. They were: two equations representing diminishing returns behaviour (monomolecular and rectangular hyperbola); and one equation describing smooth sigmoidal behaviour with a fixed point of inflexion (Gompertz). The models estimated the metabolizable energy requirement for maintenance in turkeys to be 359-415 kJ/kg of live-weight/day. The predicted values of average net energy requirement for producing 1 g of gain in live-weight, between 1 and 4 times maintenance, varied from 8.7 to 10.9 kJ. These results and those previously reported for broilers are a basis for accepting the general validity of these models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is commonly assumed that solar hot water systems save energy and reduce greenhouse gas emissions. The net energy requirement of solar hot water systems has rarely been analysed, including their embodied energy. The extent to which solar hot water systems save energy compared to conventional systems in Melbourne, Australia, is shown through a comparative net energy analysis. It was shown that the embodied energy component of the net energy requirement of solar and conventional hot water systems was insignificant. The solar hot water systems provided a net energy saving compared to the conventional systems after 0.5–2 years, for electric- and gas-boosted systems respectively.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The assessment of the direct and indirect requirements for energy is known as embodied energy analysis. For buildings, the direct energy includes that used primarily on site, while the indirect energy includes primarily the energy required for the manufacture of building materials. This thesis is concerned with the completeness and reliability of embodied energy analysis methods. Previous methods tend to address either one of these issues, but not both at the same time. Industry-based methods are incomplete. National statistical methods, while comprehensive, are a ‘black box’ and are subject to errors. A new hybrid embodied energy analysis method is derived to optimise the benefits of previous methods while minimising their flaws. In industry-based studies, known as ‘process analyses’, the energy embodied in a product is traced laboriously upstream by examining the inputs to each preceding process towards raw materials. Process analyses can be significantly incomplete, due to increasing complexity. The other major embodied energy analysis method, ‘input-output analysis’, comprises the use of national statistics. While the input-output framework is comprehensive, many inherent assumptions make the results unreliable. Hybrid analysis methods involve the combination of the two major embodied energy analysis methods discussed above, either based on process analysis or input-output analysis. The intention in both hybrid analysis methods is to reduce errors associated with the two major methods on which they are based. However, the problems inherent to each of the original methods tend to remain, to some degree, in the associated hybrid versions. Process-based hybrid analyses tend to be incomplete, due to the exclusions associated with the process analysis framework. However, input-output-based hybrid analyses tend to be unreliable because the substitution of process analysis data into the input-output framework causes unwanted indirect effects. A key deficiency in previous input-output-based hybrid analysis methods is that the input-output model is a ‘black box’, since important flows of goods and services with respect to the embodied energy of a sector cannot be readily identified. A new input-output-based hybrid analysis method was therefore developed, requiring the decomposition of the input-output model into mutually exclusive components (ie, ‘direct energy paths’). A direct energy path represents a discrete energy requirement, possibly occurring one or more transactions upstream from the process under consideration. For example, the energy required directly to manufacture the steel used in the construction of a building would represent a direct energy path of one non-energy transaction in length. A direct energy path comprises a ‘product quantity’ (for example, the total tonnes of cement used) and a ‘direct energy intensity’ (for example, the energy required directly for cement manufacture, per tonne). The input-output model was decomposed into direct energy paths for the ‘residential building construction’ sector. It was shown that 592 direct energy paths were required to describe 90% of the overall total energy intensity for ‘residential building construction’. By extracting direct energy paths using yet smaller threshold values, they were shown to be mutually exclusive. Consequently, the modification of direct energy paths using process analysis data does not cause unwanted indirect effects. A non-standard individual residential building was then selected to demonstrate the benefits of the new input-output-based hybrid analysis method in cases where the products of a sector may not be similar. Particular direct energy paths were modified with case specific process analysis data. Product quantities and direct energy intensities were derived and used to modify some of the direct energy paths. The intention of this demonstration was to determine whether 90% of the total embodied energy calculated for the building could comprise the process analysis data normally collected for the building. However, it was found that only 51% of the total comprised normally collected process analysis. The integration of process analysis data with 90% of the direct energy paths by value was unsuccessful because: • typically only one of the direct energy path components was modified using process analysis data (ie, either the product quantity or the direct energy intensity); • of the complexity of the paths derived for ‘residential building construction’; and • of the lack of reliable and consistent process analysis data from industry, for both product quantities and direct energy intensities. While the input-output model used was the best available for Australia, many errors were likely to be carried through to the direct energy paths for ‘residential building construction’. Consequently, both the value and relative importance of the direct energy paths for ‘residential building construction’ were generally found to be a poor model for the demonstration building. This was expected. Nevertheless, in the absence of better data from industry, the input-output data is likely to remain the most appropriate for completing the framework of embodied energy analyses of many types of products—even in non-standard cases. ‘Residential building construction’ was one of the 22 most complex Australian economic sectors (ie, comprising those requiring between 592 and 3215 direct energy paths to describe 90% of their total energy intensities). Consequently, for the other 87 non-energy sectors of the Australian economy, the input-output-based hybrid analysis method is likely to produce more reliable results than those calculated for the demonstration building using the direct energy paths for ‘residential building construction’. For more complex sectors than ‘residential building construction’, the new input-output-based hybrid analysis method derived here allows available process analysis data to be integrated with the input-output data in a comprehensive framework. The proportion of the result comprising the more reliable process analysis data can be calculated and used as a measure of the reliability of the result for that product or part of the product being analysed (for example, a building material or component). To ensure that future applications of the new input-output-based hybrid analysis method produce reliable results, new sources of process analysis data are required, including for such processes as services (for example, ‘banking’) and processes involving the transformation of basic materials into complex products (for example, steel and copper into an electric motor). However, even considering the limitations of the demonstration described above, the new input-output-based hybrid analysis method developed achieved the aim of the thesis: to develop a new embodied energy analysis method that allows reliable process analysis data to be integrated into the comprehensive, yet unreliable, input-output framework. Plain language summary Embodied energy analysis comprises the assessment of the direct and indirect energy requirements associated with a process. For example, the construction of a building requires the manufacture of steel structural members, and thus indirectly requires the energy used directly and indirectly in their manufacture. Embodied energy is an important measure of ecological sustainability because energy is used in virtually every human activity and many of these activities are interrelated. This thesis is concerned with the relationship between the completeness of embodied energy analysis methods and their reliability. However, previous industry-based methods, while reliable, are incomplete. Previous national statistical methods, while comprehensive, are a ‘black box’ subject to errors. A new method is derived, involving the decomposition of the comprehensive national statistical model into components that can be modified discretely using the more reliable industry data, and is demonstrated for an individual building. The demonstration failed to integrate enough industry data into the national statistical model, due to the unexpected complexity of the national statistical data and the lack of available industry data regarding energy and non-energy product requirements. These unique findings highlight the flaws in previous methods. Reliable process analysis and input-output data are required, particularly for those processes that were unable to be examined in the demonstration of the new embodied energy analysis method. This includes the energy requirements of services sectors, such as banking, and processes involving the transformation of basic materials into complex products, such as refrigerators. The application of the new method to less complex products, such as individual building materials or components, is likely to be more successful than to the residential building demonstration.