953 resultados para Endogenous Growth Models
Resumo:
The convergence features of an Endogenous Growth model with Physical capital, Human Capital and R&D have been studied. We add an erosion effect (supported by empirical evidence) to this model, and fully characterize its convergence properties. The dynamics is described by a fourth-order system of differential equations. We show that the model converges along a one-dimensional stable manifold and that its equilibrium is saddle-path stable. We also argue that one of the implications of considering this “erosion effect” is the increase in the adherence of the model to data.
Resumo:
The initial endogenous growth models emphasized the importance of externaI effects in explaining sustainable growth across time. Empirically, this hypothesis can be confirmed if the coefficient of physical capital per hour is unity in the aggregate production function. Although cross-section results concur with theory, previous estimates using time series data rejected this hypothesis, showing a small coefficient far from unity. It seems that the problem lies not with the theory but with the techniques employed, which are unable to capture low frequency movements in high frequency data. This paper uses cointegration - a technique designed to capture the existence of long-run relationships in multivariate time series - to test the externalities hypothesis of endogenous growth. The results confirm the theory' and conform to previous cross-section estimates. We show that there is long-run proportionality between output per hour and a measure of capital per hour. U sing this result, we confmn the hypothesis that the implied Solow residual can be explained by government expenditures on infra-structure, which suggests a supply side role for government affecting productivity and a decrease on the extent that the Solow residual explains the variation of output.
Resumo:
There is a family of models with Physical, Human capital and R&D for which convergence properties have been discussed (Arnold, 2000a; Gómez, 2005). However, spillovers in R&D have been ignored in this context. We introduce spillovers in this model and derive its steady-state and stability properties. This new feature implies that the model is characterized by a system of four differential equations. A unique Balanced Growth Path along with a two dimensional stable manifold are obtained under simple and reasonable conditions. Transition is oscillatory toward the steady-state for plausible values of parameters.
Resumo:
Until now, in models of endogenous growth with physical capital, human capital and R&D such as in Arnold [Journal of Macroeconomics 20 (1998)] and followers, steady-state growth is independent of innovation activities. We introduce absorption in human capital accumulation and describe the steady-state and transition of the model. We show that this new feature provides an effect of R&D in growth, consumption and welfare. We compare the quantitative effects of R&D productivity with the quantitative effects of Human Capital productivity in wealth and welfare.
Resumo:
This paper studies the effects of different types of research policy on economic growth. We find that while tax incentives to private research, public funding of private projects, and basic research performed at public institutions have unambiguously positive effects on economic growth, performing applied research at public institutions could have negative growth effects. This is due to the large crowding out of private research caused by public R\&D when it competes with private firms in the "patent race". Concerning the effects of these policies on welfare, it is found that research policy can either improve or reduce consumer welfare depending on the characteristics of the policy and that an excessively high research subsidy will reduce it.
Resumo:
Employing an endogenous growth model with human capital, this paper explores how productivity shocks in the goods and human capital producing sectors contribute to explaining aggregate fluctuations in output, consumption, investment and hours. Given the importance of accounting for both the dynamics and the trends in the data not captured by the theoretical growth model, we introduce a vector error correction model (VECM) of the measurement errors and estimate the model’s posterior density function using Bayesian methods. To contextualize our findings with those in the literature, we also assess whether the endogenous growth model or the standard real business cycle model better explains the observed variation in these aggregates. In addressing these issues we contribute to both the methods of analysis and the ongoing debate regarding the effects of innovations to productivity on macroeconomic activity.
Resumo:
What does endogenous growth theory tell about regional economies? Empirics of R&D worker-based productivity growth, Regional Studies. Endogenous growth theory emerged in the 1990s as ‘new growth theory’ accounting for technical progress in the growth process. This paper examines the role of research and development (R&D) workers underlying the Romer model (1990) and its subsequent modifications, and compares it with a model based on the accumulation of human capital engaged in R&D. Cross-section estimates of the models against productivity growth of European regions in the 1990s suggest that each R&D worker has a unique set of knowledge while his/her contributions are enhanced by knowledge sharing within a region as well as spillovers from other regions in proximity.
Resumo:
We consider a nontrivial one-species population dynamics model with finite and infinite carrying capacities. Time-dependent intrinsic and extrinsic growth rates are considered in these models. Through the model per capita growth rate we obtain a heuristic general procedure to generate scaling functions to collapse data into a simple linear behavior even if an extrinsic growth rate is included. With this data collapse, all the models studied become independent from the parameters and initial condition. Analytical solutions are found when time-dependent coefficients are considered. These solutions allow us to perceive nontrivial transitions between species extinction and survival and to calculate the transition's critical exponents. Considering an extrinsic growth rate as a cancer treatment, we show that the relevant quantity depends not only on the intensity of the treatment, but also on when the cancerous cell growth is maximum.
Resumo:
The majority of past and current individual-tree growth modelling methodologies have failed to characterise and incorporate structured stochastic components. Rather, they have relied on deterministic predictions or have added an unstructured random component to predictions. In particular, spatial stochastic structure has been neglected, despite being present in most applications of individual-tree growth models. Spatial stochastic structure (also called spatial dependence or spatial autocorrelation) eventuates when spatial influences such as competition and micro-site effects are not fully captured in models. Temporal stochastic structure (also called temporal dependence or temporal autocorrelation) eventuates when a sequence of measurements is taken on an individual-tree over time, and variables explaining temporal variation in these measurements are not included in the model. Nested stochastic structure eventuates when measurements are combined across sampling units and differences among the sampling units are not fully captured in the model. This review examines spatial, temporal, and nested stochastic structure and instances where each has been characterised in the forest biometry and statistical literature. Methodologies for incorporating stochastic structure in growth model estimation and prediction are described. Benefits from incorporation of stochastic structure include valid statistical inference, improved estimation efficiency, and more realistic and theoretically sound predictions. It is proposed in this review that individual-tree modelling methodologies need to characterise and include structured stochasticity. Possibilities for future research are discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.
Resumo:
We present new populational growth models, generalized logistic models which are proportional to beta densities with shape parameters p and 2, where p > 1, with Malthusian parameter r. The complex dynamical behaviour of these models is investigated in the parameter space (r, p), in terms of topological entropy, using explicit methods, when the Malthusian parameter r increases. This parameter space is split into different regions, according to the chaotic behaviour of the models.
Resumo:
We present a new dynamical approach to the Blumberg's equation, a family of unimodal maps. These maps are proportional to Beta(p, q) probability densities functions. Using the symmetry of the Beta(p, q) distribution and symbolic dynamics techniques, a new concept of mirror symmetry is defined for this family of maps. The kneading theory is used to analyze the effect of such symmetry in the presented models. The main result proves that two mirror symmetric unimodal maps have the same topological entropy. Different population dynamics regimes are identified, when the intrinsic growth rate is modified: extinctions, stabilities, bifurcations, chaos and Allee effect. To illustrate our results, we present a numerical analysis, where are demonstrated: monotonicity of the topological entropy with the variation of the intrinsic growth rate, existence of isentropic sets in the parameters space and mirror symmetry.
Resumo:
Population dynamics have been attracting interest since many years. Among the considered models, the Richards’ equations remain one of the most popular to describe biological growth processes. On the other hand, Allee effect is currently a major focus of ecological research, which occurs when positive density dependence dominates at low densities. In this chapter, we propose the dynamical study of classes of functions based on Richards’ models describing the existence or not of Allee effect. We investigate bifurcation structures in generalized Richards’ functions and we look for the conditions in the (β, r) parameter plane for the existence of a weak Allee effect region. We show that the existence of this region is related with the existence of a dovetail structure. When the Allee limit varies, the weak Allee effect region disappears when the dovetail structure also disappears. Consequently, we deduce the transition from the weak Allee effect to no Allee effect to this family of functions. To support our analysis, we present fold and flip bifurcation curves and numerical simulations of several bifurcation diagrams.
Resumo:
In this paper, motivated by the interest and relevance of the study of tumor growth models, a central point of our investigation is the study of the chaotic dynamics and the bifurcation structure of Weibull-Gompertz-Fréchet's functions: a class of continuousdefined one-dimensional maps. Using symbolic dynamics techniques and iteration theory, we established that depending on the properties of this class of functions in a neighborhood of a bifurcation point PBB, in a two-dimensional parameter space, there exists an order regarding how the infinite number of periodic orbits are born: the Sharkovsky ordering. Consequently, the corresponding symbolic sequences follow the usual unimodal kneading sequences in the topological ordered tree. We verified that under some sufficient conditions, Weibull-Gompertz-Fréchet's functions have a particular bifurcation structure: a big bang bifurcation point PBB. This fractal bifurcations structure is of the so-called "box-within-a-box" type, associated to a boxe ω1, where an infinite number of bifurcation curves issues from. This analysis is done making use of fold and flip bifurcation curves and symbolic dynamics techniques. The present paper is an original contribution in the framework of the big bang bifurcation analysis for continuous maps.