1000 resultados para Electron-transparency
Resumo:
The enhanced emission performance of a graphene/Mo hybrid gate electrode integrated into a nanocarbon field emission micro-triode electron source is presented. Highly electron transparent gate electrodes are fabricated from chemical vapor deposited bilayer graphene transferred to Mo grids with experimental and simulated data, showing that liberated electrons efficiently traverse multi-layer graphene membranes with transparencies in excess of 50-68%. The graphene hybrid gates are shown to reduce the gate driving voltage by 1.1 kV, whilst increasing the electron transmission efficiency of the gate electrode significantly. Integrated intensity maps show that the electron beam angular dispersion is dramatically improved (87.9°) coupled with a 63% reduction in beam diameter. Impressive temporal stability is noted (<1.0%) with surprising negligible long-term damage to the graphene. A 34% increase in triode perveance and an amplification factor 7.6 times that of conventional refractory metal grid gate electrode-based triodes are noted, thus demonstrating the excellent stability and suitability of graphene gates in micro-triode electron sources. A nanocarbon field emission triode with a hybrid gate electrode is developed. The graphene/Mo gate shows a high electron transparency (50-68%) which results in a reduced turn-on potential, increased beam collimation, reduced beam diameter (63%), enhanced stability (<1% variation), a 34% increase in perveance, and an amplification 7.6 times that of equivalent conventional refractory metal gate triodes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
In this paper, we report for the first time the spontaneous formation of Zr-based metallic glass nanofilms by developed dynamic forced-shear-rupture technique of hat-shaped specimens. The obtained nanofilms have about 100 nm thickness and other two geometrical dimensions can reach micrometer scales. Their glassy nature and structural stability were solidly identified. It was found that electrons with the wavelength of less than 0.165 Å could make the metallic glass nanofilms transparent. Furthermore, it is clearly shown that shearbanding instability still afflicts such 100-nm-thick metallic glass nanofilms.
Resumo:
Plasma-assisted magnetron sputtering with varying ambient conditions has been utilised to deposit Al-doped ZnO (AZO) transparent conductive thin films directly onto a glass substrate at a low substrate temperature of 400 °C. The effects of hydrogen addition on electrical, optical and structural properties of the deposited AZO films have been investigated using X-ray diffractometry (XRD), scanning electron microscopy (SEM), Hall effect measurements and UV–vis optical transmission spectroscopy. The results indicate that hydrogen addition has a remarkable effect on the film transparency and conductivity with the greatest effects observed with a hydrogen flux of approximately 3 sccm. It has been demonstrated that the conductivity and the average transmittance in the visible range can increase simultaneously contrary to the effects observed by other authors. In addition, hydrogen incorporation further leads to the absorption edge shifting to a shorter wavelength due to the Burstein–Moss effect. These results are of particular relevance to the development of the next generation of optoelectronic and photovoltaic devices based on highly transparent conducting oxides with controllable electronic and optical properties.
Resumo:
This paper describes the preparation and the characterization Of Y2O3 stabilized ZrO2 thin films produced by electric-beam evaporation method. The optical properties, microstructure, surface morphology and the residual stress of the deposited films were investigated by optical spectroscopy, X-ray diffraction (XRD), scanning probe microscope and optical interferometer. It is shown that the optical transmission spectra of all the YSZ thin films are similar with those of ZrO2 thin film, possessing high transparency in the visible and near-infrared regions. The refractive index of the samples decreases with increasing of Y2O3 content. The crystalline structure of pure ZrO2 films is a mixture of tetragonal phase and monoclinic phase, however, Y2O3 stabilized ZrO2 thin films only exhibit the cubic phase independently of how much the added Y2O3 content is. The surface morphology spectrum indicates that all thin films present a crystalline columnar texture with columnar grains perpendicular to the substrate and with a predominantly open microporosity. The residual stress of films transforms tensile from compressive with the increasing Of Y2O3 molar content, which corresponds to the evolutions of the structure and packing densities. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We report on the acceleration of ion beams from ultrathin diamondlike carbon foils of thickness 50, 30, and 10 nm irradiated by ultrahigh contrast laser pulses at intensities of similar to 7 X 10(19) W/cm(2). An unprecedented maximum energy of 185 MeV (15 MeV/u) for fully ionized carbon atoms is observed at the optimum thickness of 30 nm. The enhanced acceleration is attributed to self-induced transparency, leading to strong volumetric heating of the classically overdense electron population in the bulk of the target. Our experimental results are supported by both particle-in-cell (PIC) simulations and an analytical model.
Resumo:
Asymmetry in the collective dynamics of ponderomotively-driven electrons in the interaction of an ultraintense laser pulse with a relativistically transparent target is demonstrated experimentally. The 2D profile of the beam of accelerated electrons is shown to change from an ellipse aligned along the laser polarization direction in the case of limited transparency, to a double-lobe structure aligned perpendicular to it when a significant fraction of the laser pulse co-propagates with the electrons. The temporally-resolved dynamics of the interaction are investigated via particle-in-cell simulations. The results provide new insight into the collective response of charged particles to intense laser fields over an extended interaction volume, which is important for a wide range of applications, and in particular for the development of promising new ultraintense laser-driven ion acceleration mechanisms involving ultrathin target foils.
Resumo:
Ion acceleration from relativistic laser solid interactions has been of particular interest over the last decade. While beam profiles have been studied for target normal sheath acceleration (TNSA), such profiles have yet to be described for other mechanisms. Here, experimental data is presented, investigating ion beam profiles from acceleration governed by relativistic transparent laser plasma interaction. The beam shape of carbon C6+ ions and protons has been measured simultaneously with a wide angle spectrometer. It was found that ion beams deviate from the typical Gaussian-like shape found with TNSA and that the profile is governed by electron dynamics in the volumetric laser-plasma interaction with a relativistically transparent plasma; due to the ponderomotive force electrons are depleted from the center of the laser axis and form lobes affecting the ion beam structure. The results are in good agreement with high resolution three-dimensional-VPIC simulations and can be used as a new tool to experimentally distinguish between different acceleration mechanisms.
Resumo:
The corneal endothelium is essential for the maintenance of the corneal transparency. The aim of this study was to examine the morphology of the endothelial surface and perform morphometric analysis of the normal corneal endothelial cells of the Magellanic penguin (Spheniscus magellanicus) using scanning electron microscopy. The present work demonstrates that the corneal endothelium of the Magellanic penguin is similar to those described in other vertebrates. Copyright 2005 by American Association of Zoo Veterinarians.
Resumo:
Use of a spherical grid as electron collector at the anodic end of a tether, as recently proposed, is considered. The standard analysis of space-charge limited current to a solid sphere (with neither magnetic nor plasma-motion effects), which has been shown to best fit TSS1R in-orbit results at very high bias, is used to determine effects from grid transparency on current collected; the analysis is first reformulated in the formalism recently introduced in the two-dimensional analysis of bare-tethers. A discussion of the electric potential created by a spherical grid in vacuum is then carried out; it is shown that each grid-wire collects current well below its maximum OML current, the effective grid transparency being close to its optical value. Formulae for the current to a spherical grid, showing the effects of grid transparency, is determined. A fully consistent analysis of electric potential and electron density, outside and inside the grid, is completed.
Resumo:
Materials with high electrical conductivity and optical transparency are needed for future flat panel display, solar energy, and other opto-electronic technologies. InxCd1-xO films having a simple cubic microstructure have been grown on amorphous glass substrates by a straightforward chemical vapor deposition process. The x = 0.05 film conductivity of 17,000 S/cm, carrier mobility of 70 cm2/Vs, and visible region optical transparency window considerably exceed the corresponding parameters for commercial indium-tin oxide. Ab initio electronic structure calculations reveal small conduction electron effective masses, a dramatic shift of the CdO band gap with doping, and a conduction band hybridization gap caused by extensive Cd 5s + In 5s mixing.
Resumo:
Control of the collective response of plasma particles to intense laser light is intrinsic to relativistic optics, the development of compact laser-driven particle and radiation sources, as well as investigations of some laboratory astrophysics phenomena. We recently demonstrated that a relativistic plasma aperture produced in an ultra-thin foil at the focus of intense laser radiation can induce diffraction, enabling polarization-based control of the collective motion of plasma electrons. Here we show that under these conditions the electron dynamics are mapped into the beam of protons accelerated via strong charge-separation-induced electrostatic fields. It is demonstrated experimentally and numerically via 3D particle-in-cell simulations that the degree of ellipticity of the laser polarization strongly influences the spatial-intensity distribution of the beam of multi-MeV protons. The influence on both sheath-accelerated and radiation pressure-accelerated protons is investigated. This approach opens up a potential new route to control laser-driven ion sources.
Resumo:
The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.
Resumo:
EPR study of both blue and green sapphire samples confirms the presence of Cr(III) in four different octahedral sites. The g (1.98) value is the same but D values differ for the two the samples. The EPR spectra suggest that the blue sapphire contains more chromium than the green sapphire. No Fe(III) impurity was noted in the EPR spectrum.