930 resultados para Electric drives


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ever-increasing spread of automation in industry puts the electrical engineer in a central role as a promoter of technological development in a sector such as the use of electricity, which is the basis of all the machinery and productive processes. Moreover the spread of drives for motor control and static converters with structures ever more complex, places the electrical engineer to face new challenges whose solution has as critical elements in the implementation of digital control techniques with the requirements of inexpensiveness and efficiency of the final product. The successfully application of solutions using non-conventional static converters awake an increasing interest in science and industry due to the promising opportunities. However, in the same time, new problems emerge whose solution is still under study and debate in the scientific community During the Ph.D. course several themes have been developed that, while obtaining the recent and growing interest of scientific community, have much space for the development of research activity and for industrial applications. The first area of research is related to the control of three phase induction motors with high dynamic performance and the sensorless control in the high speed range. The management of the operation of induction machine without position or speed sensors awakes interest in the industrial world due to the increased reliability and robustness of this solution combined with a lower cost of production and purchase of this technology compared to the others available in the market. During this dissertation control techniques will be proposed which are able to exploit the total dc link voltage and at the same time capable to exploit the maximum torque capability in whole speed range with good dynamic performance. The proposed solution preserves the simplicity of tuning of the regulators. Furthermore, in order to validate the effectiveness of presented solution, it is assessed in terms of performance and complexity and compared to two other algorithm presented in literature. The feasibility of the proposed algorithm is also tested on induction motor drive fed by a matrix converter. Another important research area is connected to the development of technology for vehicular applications. In this field the dynamic performances and the low power consumption is one of most important goals for an effective algorithm. Towards this direction, a control scheme for induction motor that integrates within a coherent solution some of the features that are commonly required to an electric vehicle drive is presented. The main features of the proposed control scheme are the capability to exploit the maximum torque in the whole speed range, a weak dependence on the motor parameters, a good robustness against the variations of the dc-link voltage and, whenever possible, the maximum efficiency. The second part of this dissertation is dedicated to the multi-phase systems. This technology, in fact, is characterized by a number of issues worthy of investigation that make it competitive with other technologies already on the market. Multiphase systems, allow to redistribute power at a higher number of phases, thus making possible the construction of electronic converters which otherwise would be very difficult to achieve due to the limits of present power electronics. Multiphase drives have an intrinsic reliability given by the possibility that a fault of a phase, caused by the possible failure of a component of the converter, can be solved without inefficiency of the machine or application of a pulsating torque. The control of the magnetic field spatial harmonics in the air-gap with order higher than one allows to reduce torque noise and to obtain high torque density motor and multi-motor applications. In one of the next chapters a control scheme able to increase the motor torque by adding a third harmonic component to the air-gap magnetic field will be presented. Above the base speed the control system reduces the motor flux in such a way to ensure the maximum torque capability. The presented analysis considers the drive constrains and shows how these limits modify the motor performance. The multi-motor applications are described by a well-defined number of multiphase machines, having series connected stator windings, with an opportune permutation of the phases these machines can be independently controlled with a single multi-phase inverter. In this dissertation this solution will be presented and an electric drive consisting of two five-phase PM tubular actuators fed by a single five-phase inverter will be presented. Finally the modulation strategies for a multi-phase inverter will be illustrated. The problem of the space vector modulation of multiphase inverters with an odd number of phases is solved in different way. An algorithmic approach and a look-up table solution will be proposed. The inverter output voltage capability will be investigated, showing that the proposed modulation strategy is able to fully exploit the dc input voltage either in sinusoidal or non-sinusoidal operating conditions. All this aspects are considered in the next chapters. In particular, Chapter 1 summarizes the mathematical model of induction motor. The Chapter 2 is a brief state of art on three-phase inverter. Chapter 3 proposes a stator flux vector control for a three- phase induction machine and compares this solution with two other algorithms presented in literature. Furthermore, in the same chapter, a complete electric drive based on matrix converter is presented. In Chapter 4 a control strategy suitable for electric vehicles is illustrated. Chapter 5 describes the mathematical model of multi-phase induction machines whereas chapter 6 analyzes the multi-phase inverter and its modulation strategies. Chapter 7 discusses the minimization of the power losses in IGBT multi-phase inverters with carrier-based pulse width modulation. In Chapter 8 an extended stator flux vector control for a seven-phase induction motor is presented. Chapter 9 concerns the high torque density applications and in Chapter 10 different fault tolerant control strategies are analyzed. Finally, the last chapter presents a positioning multi-motor drive consisting of two PM tubular five-phase actuators fed by a single five-phase inverter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present dissertation aims to explore, theoretically and experimentally, the problems and the potential advantages of different types of power converters for “Smart Grid” applications, with particular emphasis on multi-level architectures, which are attracting a rising interest even for industrial requests. The models of the main multilevel architectures (Diode-Clamped and Cascaded) are shown. The best suited modulation strategies to function as a network interface are identified. In particular, the close correlation between PWM (Pulse Width Modulation) approach and SVM (Space Vector Modulation) approach is highlighted. An innovative multilevel topology called MMC (Modular Multilevel Converter) is investigated, and the single-phase, three-phase and "back to back" configurations are analyzed. Specific control techniques that can manage, in an appropriate way, the charge level of the numerous capacitors and handle the power flow in a flexible way are defined and experimentally validated. Another converter that is attracting interest in “Power Conditioning Systems” field is the “Matrix Converter”. Even in this architecture, the output voltage is multilevel. It offers an high quality input current, a bidirectional power flow and has the possibility to control the input power factor (i.e. possibility to participate to active and reactive power regulations). The implemented control system, that allows fast data acquisition for diagnostic purposes, is described and experimentally verified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first part of this thesis has focused on the construction of a twelve-phase asynchronous machine for More Electric Aircraft (MEA) applications. In fact, the aerospace world has found in electrification the way to improve the efficiency, reliability and maintainability of an aircraft. This idea leads to the aircraft a new management and distribution of electrical services. In this way is possible to remove or to reduce the hydraulic, mechanical and pneumatic systems inside the aircraft. The second part of this dissertation is dedicated on the enhancement of the control range of matrix converters (MCs) operating with non-unity input power factor and, at the same time, on the reduction of the switching power losses. The analysis leads to the determination in closed form of a modulation strategy that features a control range, in terms of output voltage and input power factor, that is greater than that of the traditional strategies under the same operating conditions, and a reduction in the switching power losses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Interior permanent-magnet synchronous motors (IPMSMs) become attractive candidates in modern hybrid electric vehicles and industrial applications. Usually, to obtain good control performance, the electric drives of this kind of motor require one position, one dc link, and at least two current sensors. Failure of any of these sensors might lead to degraded system performance or even instability. As such, sensor fault resilient control becomes a very important issue in modern drive systems. This paper proposes a novel sensor fault detection and isolation algorithm based on an extended Kalman filter. It is robust to system random noise and efficient in real-time implementation. Moreover, the proposed algorithm is compact and can detect and isolate all the sensor faults for IPMSM drives. Thorough theoretical analysis is provided, and the effectiveness of the proposed approach is proven by extensive experimental results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays, drives that use a combination of induction motors and frequency inverters are very common, a fact due to the financial practicality and viability in purchasing and operating that system. This system modeling and simulation becomes important when it wants to evaluate the performance, to calculate and correct parameters, and it has a fundamental role in functionality and viability analysis for application of new configurations and technologies. This work is about to elaborate a simple induction motor model based in the torque versus speed characteristic, using the linearization method for application in a specific operation range to be controlled by a frequency inverter. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system. With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Traditional high speed machinery actuators are powered and coordinated by mechanical linkages driven from a central drive, but these linkages may be replaced by independently synchronised electric drives. Problems associated with utilising such electric drives for this form of machinery were investigated. The research concentrated on a high speed rod-making machine, which required control of high inertias (0.01-0.5kgm2), at continuous high speed (2500 r/min), with low relative phase errors between two drives (0.0025 radians). Traditional minimum energy drive selection techniques for incremental motions were not applicable to continuous applications which require negligible energy dissipation. New selection techniques were developed. A brushless configuration constant enabled the comparison between seven different servo systems; the rate earth brushless drives had the best power rates which is a performance measure. Simulation was used to review control strategies, such that a microprocessor controller with a proportional velocity loop within a proportional position loop with velocity feedforward was designed. Local control schemes were investigated as means of reducing relative errors between drives: the slave of a master/slave scheme compensates for the master's errors: the matched scheme has drives with similar absolute errors so the relative error is minimised, and the feedforward scheme minimises error by adding compensation from previous knowledge. Simulation gave an approximate velocity loop bandwidth and position loop gain required to meet the specification. Theoretical limits for these parameters were defined in terms of digital sampling delays, quantisation, and system phase shifts. Performance degradation due to mechanical backlash was evaluated. Thus any drive could be checked to ensure that the performance specification could be realised. A two drive demonstrator was commissioned with 0.01kgm2 loads. By use of simulation the performance of one drive was improved by increasing the velocity loop bandwidth fourfold. With the master/slave scheme relative errors were within 0.0024 radians at a constant 2500 r/min for two 0.01 kgm^2 loads.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes a lightweight, modular and energy efficient robotic vehicle platform designed for broadacre agriculture - the Small Robotic Farm Vehicle (SRFV). The current trend in farming is towards increasingly large machines that optimise the individual farmer’s productivity. Instead, the SRFV is designed to promote the sustainable intensification of agriculture by allowing farmers to concentrate on more important farm management tasks. The robot has been designed with a user-centred approach which focuses the outcomes of the project on the needs of the key project stakeholders. In this way user and environmental considerations for broadacre farming have informed the vehicle platform configuration, locomotion, power requirements and chassis construction. The resultant design is a lightweight, modular four-wheeled differential steer vehicle incorporating custom twin in-hub electric drives with emergency brakes. The vehicle is designed for a balance between low soil impact, stability, energy efficiency and traction. The paper includes modelling of the robot’s dynamics during an emergency brake in order to determine the potential for tipping. The vehicle is powered by a selection of energy sources including rechargeable lithium batteries and petrol-electric generators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electric walking draglines are physically large and powerful machines used in the mining industry. However with the addition of suitable sensors and a controller a dragline can be considered as a numerically controlled machine or robot which can then perform parts of the operating cycle automatically. This paper presents an analysis of the electromechanical system necessary precursor to automatic control

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present work introduces a new strategy of induction machines speed adjustment using an adaptive PID (Proportional Integral Derivative) digital controller with gain planning based on the artificial neural networks. This digital controller uses an auxiliary variable to determine the ideal induction machine operating conditions and to establish the closed loop gain of the system. The auxiliary variable value can be estimated from the information stored in a general-purpose artificial neural network based on CMAC (Cerebellar Model Articulation Controller).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many electronic drivers for the induction motor control are based on sensorless technologies. The proposal of this work Is to present an alternative approach of speed estimation, from transient to steady state, using artificial neural networks. The inputs of the network are the RMS voltage, current and speed estimated of the induction motor feedback to the input with a delay of n samples. Simulation results are also presented to validate the proposed approach. © 2006 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this paper is to present a simple method for determining the high frequency parameters of a three-phase induction motor to be used in studies involving variable speed drives with PWM three-phase inverters, in which it is necessary to check the effects caused to the motor by the electromagnetic interference, (EMI) in the differential mode, as well as in the common mode. The motor parameters determination is generally performed in adequate laboratories using accurate instruments, such as very expensive RLC bridges. The method proposed here consists in the identification of the motor equivalent electrical circuit parameters in rated frequency and in high frequency through characteristic tests in the laboratory, together with the use of characteristic equations and curves, shown in the references to be mentioned for determining the motor high frequency parasite capacitances and also through system simulations using dedicated software, like Pspice, determining the characteristic waveforms involved in the differential and common mode phenomena, comparing and validating the procedure through published papers [01].

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work proposes a new three-phase multipulse rectifier based on the delta autotransformer connection with DC-DC Boost stages and constant hysteresis control which has the objective of providing a reliable DC bus for on-board applications, electric motor drives and similars, always considering power quality issues. Thus, the proposal presents 0.99 power factor, 6% harmonic distortions in the currents from the mains and enhanced magnetic core utilization, which results in low weight and volume for the overall converter. The proposed control technique uses the simple constant hysteresis concept, thus leading to a low-cost but effective and reliable strategy. © 2011 IEEE.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recently in most of the industrial automation process an ever increasing degree of automation has been observed. This increasing is motivated by the higher requirement of systems with great performance in terms of quality of products/services generated, productivity, efficiency and low costs in the design, realization and maintenance. This trend in the growth of complex automation systems is rapidly spreading over automated manufacturing systems (AMS), where the integration of the mechanical and electronic technology, typical of the Mechatronics, is merging with other technologies such as Informatics and the communication networks. An AMS is a very complex system that can be thought constituted by a set of flexible working stations, one or more transportation systems. To understand how this machine are important in our society let considerate that every day most of us use bottles of water or soda, buy product in box like food or cigarets and so on. Another important consideration from its complexity derive from the fact that the the consortium of machine producers has estimated around 350 types of manufacturing machine. A large number of manufacturing machine industry are presented in Italy and notably packaging machine industry,in particular a great concentration of this kind of industry is located in Bologna area; for this reason the Bologna area is called “packaging valley”. Usually, the various parts of the AMS interact among them in a concurrent and asynchronous way, and coordinate the parts of the machine to obtain a desiderated overall behaviour is an hard task. Often, this is the case in large scale systems, organized in a modular and distributed manner. Even if the success of a modern AMS from a functional and behavioural point of view is still to attribute to the design choices operated in the definition of the mechanical structure and electrical electronic architecture, the system that governs the control of the plant is becoming crucial, because of the large number of duties associated to it. Apart from the activity inherent to the automation of themachine cycles, the supervisory system is called to perform other main functions such as: emulating the behaviour of traditional mechanical members thus allowing a drastic constructive simplification of the machine and a crucial functional flexibility; dynamically adapting the control strategies according to the different productive needs and to the different operational scenarios; obtaining a high quality of the final product through the verification of the correctness of the processing; addressing the operator devoted to themachine to promptly and carefully take the actions devoted to establish or restore the optimal operating conditions; managing in real time information on diagnostics, as a support of the maintenance operations of the machine. The kind of facilities that designers can directly find on themarket, in terms of software component libraries provides in fact an adequate support as regard the implementation of either top-level or bottom-level functionalities, typically pertaining to the domains of user-friendly HMIs, closed-loop regulation and motion control, fieldbus-based interconnection of remote smart devices. What is still lacking is a reference framework comprising a comprehensive set of highly reusable logic control components that, focussing on the cross-cutting functionalities characterizing the automation domain, may help the designers in the process of modelling and structuring their applications according to the specific needs. Historically, the design and verification process for complex automated industrial systems is performed in empirical way, without a clear distinction between functional and technological-implementation concepts and without a systematic method to organically deal with the complete system. Traditionally, in the field of analog and digital control design and verification through formal and simulation tools have been adopted since a long time ago, at least for multivariable and/or nonlinear controllers for complex time-driven dynamics as in the fields of vehicles, aircrafts, robots, electric drives and complex power electronics equipments. Moving to the field of logic control, typical for industrial manufacturing automation, the design and verification process is approached in a completely different way, usually very “unstructured”. No clear distinction between functions and implementations, between functional architectures and technological architectures and platforms is considered. Probably this difference is due to the different “dynamical framework”of logic control with respect to analog/digital control. As a matter of facts, in logic control discrete-events dynamics replace time-driven dynamics; hence most of the formal and mathematical tools of analog/digital control cannot be directly migrated to logic control to enlighten the distinction between functions and implementations. In addition, in the common view of application technicians, logic control design is strictly connected to the adopted implementation technology (relays in the past, software nowadays), leading again to a deep confusion among functional view and technological view. In Industrial automation software engineering, concepts as modularity, encapsulation, composability and reusability are strongly emphasized and profitably realized in the so-calledobject-oriented methodologies. Industrial automation is receiving lately this approach, as testified by some IEC standards IEC 611313, IEC 61499 which have been considered in commercial products only recently. On the other hand, in the scientific and technical literature many contributions have been already proposed to establish a suitable modelling framework for industrial automation. During last years it was possible to note a considerable growth in the exploitation of innovative concepts and technologies from ICT world in industrial automation systems. For what concerns the logic control design, Model Based Design (MBD) is being imported in industrial automation from software engineering field. Another key-point in industrial automated systems is the growth of requirements in terms of availability, reliability and safety for technological systems. In other words, the control system should not only deal with the nominal behaviour, but should also deal with other important duties, such as diagnosis and faults isolations, recovery and safety management. Indeed, together with high performance, in complex systems fault occurrences increase. This is a consequence of the fact that, as it typically occurs in reliable mechatronic systems, in complex systems such as AMS, together with reliable mechanical elements, an increasing number of electronic devices are also present, that are more vulnerable by their own nature. The diagnosis problem and the faults isolation in a generic dynamical system consists in the design of an elaboration unit that, appropriately processing the inputs and outputs of the dynamical system, is also capable of detecting incipient faults on the plant devices, reconfiguring the control system so as to guarantee satisfactory performance. The designer should be able to formally verify the product, certifying that, in its final implementation, it will perform itsrequired function guarantying the desired level of reliability and safety; the next step is that of preventing faults and eventually reconfiguring the control system so that faults are tolerated. On this topic an important improvement to formal verification of logic control, fault diagnosis and fault tolerant control results derive from Discrete Event Systems theory. The aimof this work is to define a design pattern and a control architecture to help the designer of control logic in industrial automated systems. The work starts with a brief discussion on main characteristics and description of industrial automated systems on Chapter 1. In Chapter 2 a survey on the state of the software engineering paradigm applied to industrial automation is discussed. Chapter 3 presentes a architecture for industrial automated systems based on the new concept of Generalized Actuator showing its benefits, while in Chapter 4 this architecture is refined using a novel entity, the Generalized Device in order to have a better reusability and modularity of the control logic. In Chapter 5 a new approach will be present based on Discrete Event Systems for the problemof software formal verification and an active fault tolerant control architecture using online diagnostic. Finally conclusive remarks and some ideas on new directions to explore are given. In Appendix A are briefly reported some concepts and results about Discrete Event Systems which should help the reader in understanding some crucial points in chapter 5; while in Appendix B an overview on the experimental testbed of the Laboratory of Automation of University of Bologna, is reported to validated the approach presented in chapter 3, chapter 4 and chapter 5. In Appendix C some components model used in chapter 5 for formal verification are reported.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insbesondere bei Antriebssystemen stehen die Energiekosten neben den Anschaffungskosten im Fokus. Jedoch bleiben weitere Folgekosten, die im Laufe des Betriebs eines Antriebssystems in einem Fördermittel entstehen, meist unberücksichtigt. Dieser Artikel beschreibt einen Ansatz, wie sich Lebenszykluskosten von Antriebssystemen in Stetigfördertechnik prognostizieren lassen. Mit Hilfe von allgemein bekannten Normen und Richtlinien kann der Lebenszyklus eines Antriebssystems von der Projektierung über die Herstellung bis zur Entsorgung nach dem Betrieb in Kostenarten eingeteilt und veranschaulicht werden. Unter Verwendung von direkter Verrechnung als auch der Kalkulation mit Prozesskosten wird eine hinreichende Genauigkeit anhand definierter Prozessketten erreicht. Auf Basis dieser Kostenkalkulationen kann ein mehrstufiges Prognosemodell gebildet werden. Somit konnten durch das entwickelnde Modell Anlagenbeispiele untersucht und berechnet werden.