819 resultados para Efficient welding
Resumo:
Efficient production and consumption of energy has become the top priority of national and international policies around the world. Manufacturing industries have to address the requirements of the government in relation to energy saving and ecologically sustainable products. These industries are also concerned with energy and material usage due to their rising costs. Therefore industries have to find solutions that can support environmental preservation yet maintain competitiveness in the market. Welding, a major manufacturing process, consumes a great deal of material and energy. It is a crucial process in improving a product’s life-cycle cost, strength, quality and reliability. Factors which lead to weld related inefficiencies have to be effectively managed, if industries are to meet their quality requirements and fulfil a high-volume production demand. Therefore it is important to consider some practical strategies in welding process for optimization of energy and material consumption. The main objective of this thesis is to explore the methods of minimizing the ecological footprint of the welding process and methods to effectively manage its material and energy usage in the welding process. The author has performed a critical review of the factors including improved weld power source efficiency, efficient weld techniques, newly developed weld materials, intelligent welding systems, weld safety measures and personnel training. The study lends strong support to the fact that the use of eco-friendly welding units and the quality weld joints obtained with minimum possible consumption of energy and materials should be the main directions of improvement in welding systems. The study concludes that, gradually implementing the practical strategies mentioned in this thesis would help the manufacturing industries to achieve on the following - reduced power consumption, enhanced power control and manipulation, increased deposition rate, reduced cycle time, reduced joint preparation time, reduced heat affected zones, reduced repair rates, improved joint properties, reduced post-weld operations, improved automation, improved sensing and control, avoiding hazardous conditions and reduced exposure of welder to potential hazards. These improvement can help in promotion of welding as a green manufacturing process.
Resumo:
Hitsaavassa teollisuudessa kilpailukyvyn säilyttäminen edellyttää hitsauksen tehokkuuden nostoa. Niinpä metalliteollisuus etsii kuumeisesti uusia yhä tehokkaampia hitsausmenetelmiä. CO2-laserin ja MAG:in yhdistelmän muodostamalla hybridihitsauksella saadaan aikaan syvä tunkeuma kuten laserhitsauksessa, mutta sallitaan laserhitsausta väljemmät railotoleranssit. Samalla muodonmuutokset vähenevät huomattavasti verrattuna perinteiseen kaarihitsaukseen. Kaariavusteisessa laserhitsauksessa yhdistetään laserhitsaukseen perinteinen kaarihitsaus eli MIG/MAG-, TIG- tai plasmahitsaus. Menetelmää voidaan kutsua myös hybridihitsaukseksi ja sillä hyödynnetään molempien prosessien edut välttyen yksittäisten prosessien haitoilta. Prosessin haittapuolena on parametrien suuri määrä, joka on rajoittanut menetelmän käyttöönottoa. Diplomityössä tutkittiin suojakaasuseoksen koostumuksen vaikutusta rakenneteräksen CO2-laser-MAG-hybridihitsauksessa. Laserhitsauksen ja MAG-hitsauksen suojakaasuvirtaukset yhdistettiin siten, että heliumseosteinen suojakaasu tuotiin MAG-polttimen kaasukuvun kautta. Suojakaasun heliumpitoisuus nostettiin niin korkeaksi, että estettiin laserhitsauksen muodostaman plasman syntyminen. Samalla hitsauskokeissa opittiin paremmin ymmärtämään prosessia ja sen parametrien riippuvuutta toisiinsa. Tutkitut suojakaasuseokset koostuivat heliumista, argonista ja hiilidioksidista. Hitsauskokeiden perusteella havaittiin, että suojakaasuseoksen optimaalinen heliumpitoisuus on 40-50 %. Tällöin laserin tunkeumaa häiritsevää plasmapilveä ei synny ja prosessi on stabiili. Päittäisliitosten hitsauksessa suojakaasuseoksen 2 %:n CO2-pitoisuudella saadaan aikaan hyvin vähän huokosia sisältävä hitsi, jonka tunkeumaprofiilin muoto ja liittymä perusaineeseen on juoheva. Pienaliitoksilla 7 %:n CO2-pitoisuudella prosessi pysyy stabiilina ja vähäroiskeisena. Tunkeuma hieman levenee hitsin keskeltä ja hitsin liittyminen perusaineeseen on juoheva.CO2-laser-MAG-hybridihitsauksella aikaansaadaan laadukkaita hitsejä taloudellisesti, mikäli käytetyt parametrit ovat oikein valittuja. Parametrit on sovitettava jokaiseen hitsaustapaukseen erikseen, eikä niitä välttämättä voida suoraan käyttää toisessa tapauksessa.
Resumo:
Since the introduction of automatic orbital welding in pipeline application in 1961, significant improvements have been obtained in orbital pipe welding systems. Requirement of more productive welding systems for pipeline application forces manufacturers to innovate new advanced systems and welding processes for orbital welding method. Various methods have been used to make welding process adaptive, such as visual sensing, passive visual sensing, real-time intelligent control, scan welding technique, multi laser vision sensor, thermal scanning, adaptive image processing, neural network model, machine vision, and optical sensing. Numerous studies are reviewed and discussed in this Master’s thesis and based on a wide range of experiments which already have been accomplished by different researches the vision sensor are reported to be the best choice for adaptive orbital pipe welding system. Also, in this study the most welding processes as well as the most pipe variations welded by orbital welding systems mainly for oil and gas pipeline applications are explained. The welding results show that Gas Metal Arc Welding (GMAW) and its variants like Surface Tension Transfer (STT) and modified short circuit are the most preferred processes in the welding of root pass and can be replaced to the Gas Tungsten Arc Welding (GTAW) in many applications. Furthermore, dual-tandem gas metal arc welding technique is currently considered the most efficient method in the welding of fill pass. Orbital GTAW process mostly is applied for applications ranging from single run welding of thin walled stainless tubes to multi run welding of thick walled pipes. Flux cored arc welding process is faster process with higher deposition rate and recently this process is getting more popular in pipe welding applications. Also, combination of gas metal arc welding and Nd:YAG laser has shown acceptable results in girth welding of land pipelines for oil and gas industry. This Master’s thesis can be implemented as a guideline in welding of pipes and tubes to achieve higher quality and efficiency. Also, this research can be used as a base material for future investigations to supplement present finding.
Resumo:
Joining processes and techniques need to meet the trend of new applications and the development of new materials. The application in connection with thick and thin plates in industrial fields is wide and the joining technology is in very urgent need. The laser-TIG hybrid welding technology can play the respective advantages of both of them. One major advantage of the hybrid laser-TIG welding technology is its efficient use of laser energy. Additionally, it can develop into a high and new advanced welding technology and become a hot spot in both the application and research area. This thesis investigated laser –TIG hybrid welding with the aim of enlightening the reader on its advantages, disadvantages and future areas of improvement. The main objective is to investigate laser-TIG hybrid on the welding of various metals (steels, magnesium, aluminium etc.). In addition, it elaborates on various possible combinations on hybrid laser-TIG welding technology and their benefits. The possibility of using laser-TIG hybrid in welding of thick materials was investigated. The method applied in carrying out this research is by using literature review. The results showed that hybrid laser-TIG is applicable to almost all weldable metals. Also it proves to be effective in welding refractive metals. The possibility of welding with or without filler materials is of economic advantage especially in welding of materials with no filler material. Thick plate’s hybrid laser-TIG welding is showing great prospects although it normally finds its used in welding thin materials in the range of 0.4 to 0.8 mm. The findings show that laser-TIG hybrid welding can be a versatile welding process and therefore will be increasingly used industrially due to its numerous advantages and the development of new TIG arc that enhances its capabilities.
Resumo:
Protocols for the generation of dendritic cells (DCs) using serum as a supplementation of culture media leads to reactions due to animal proteins and disease transmissions. Several types of serum-free media (SFM), based on good manufacture practices (GMP), have recently been used and seem to be a viable option. The aim of this study was to evaluate the results of the differentiation, maturation, and function of DCs from Acute Myeloid Leukemia patients (AML), generated in SFM and medium supplemented with autologous serum (AS). DCs were analyzed by phenotype characteristics, viability, and functionality. The results showed the possibility of generating viable DCs in all the conditions tested. In patients, the X-VIVO 15 medium was more efficient than the other media tested in the generation of DCs producing IL-12p70 (p=0.05). Moreover, the presence of AS led to a significant increase of IL-10 by DCs as compared with CellGro (p=0.05) and X-Vivo15 (p=0.05) media, both in patients and donors. We concluded that SFM was efficient in the production of DCs for immunotherapy in AML patients. However, the use of AS appears to interfere with the functional capacity of the generated DCs.
Resumo:
The aim of this study was to analyze the shear bond strength between commercially pure titanium, with and without laser welding, after airbone-particle abrasion (Al2O3) and 2 indirect composites. Sixty-four specimens were cast and divided into 2 groups with and without laser welding. Each group was divided in 4 subgroups, related to Al2O3 grain size: A - 250 µm; B - 180 µm; C- 110 µm; and D - 50 µm. Composite rings were formed around the rods and light polymerized using UniXS unit. Specimens were invested and their shear bond strength at failure was measured with a universal testing machine at a crosshead speed of 2.0 mm/min. Statistical analysis was carried out with ANOVA and Tukey's test (α=0.05). The highest bond strength means were recorded in 250 µm group without laser welding. The lowest shear bond strength means were recorded in 50 µm group with laser welding. Statistically significant differences (p<0.05) were found between all groups. In conclusion, airborne particle abrasion yielded significantly lower bond strength as the Al2O3 particle size decreased. Shear bond strength decreased in the laser welded specimens.
Resumo:
This article describes the synthesis of the new (2Z)-2-(4-methoxybenzylidene)-6-nitro-4H -benzo[1,4]thiazin-3-one, (2Z)-2-(4-methoxybenzylidene)-4-methyl-6-nitro-4H-benzo[1,4]thiazin-3-one, (2Z)-6-amino-2-(4-methoxybenzylidene)-4H -benzo[1,4]thiazin-3-one, (2Z)-6-butylamino-2-(4-methoxybenzylidene)-4-methyl-4H-benzo[1,4]-thiazin-3-one and (2E)-N-alkyl-N-(2-hydroxy-5-nitrophenyl)-3-phenylacrylamides and the spectroscopic data. The arylidenebenzothiazine compounds were prepared using the Knoevenagel condensation with substituted benzaldehydes in the presence of sodium methoxide in DMF. The presence of a nitro substituent in the 4-position, water and a slightly acid reaction medium in this condensation caused the rupture of the benzothiazine ring and subsequent formation of the phenylacrylamide compounds. A crystallographic data was presented for (2E)-3-(4-bromophenyl)-N-dodecyl-N -(2-hydroxy-5-nitrophenyl) acrylamide.
Resumo:
The hygienic behavior of honey bees is based on a two-step process, including uncapping and removing diseased, dead, damaged, or parasitized brood inside the cell. We evaluated during periods of 1 h the time that hygienic and non-hygienic colonies of Africanized honey bees spend to detect, uncap and remove pin-killed brood using comb inserts with transparent walls placed in observation hives. We observed that hygienic colonies are significantly faster in detecting, uncapping and removing dead brood in the cells (P < 0.001).
Resumo:
Background and Purpose: Radiofrequency (RF) ablation of renal tumors is a major technique for tumor cell destruction while preserving healthy renal parenchyma. There is no consensus in the literature regarding the optimal temperature, impedance, and time for RF application for effective cell destruction. This study investigated two variables while keeping time unchanged: Temperature for RF cell destruction and tissue impedance in dog kidneys. Materials and Methods: Sixteen dogs had renal punctures through videolaparoscopy for RF interstitial tissue ablation. A RF generator was applied for 10 minutes to the dog's kidney at different target temperatures: 80 degrees C, 90 degrees C, and 100 degrees C. On postoperative day14, the animals were sacrificed and nephrectomized. All lesions were macroscopically and microscopically examined. The bioelectrical impedance was evaluated at three different temperatures. Results: Renal injuries were wider and deeper at 90 degrees C (P < 0.001), and they were similar at 80 degrees C and 100 degrees C. The bioelectrical impedance was lower at 90 degrees C than at the temperatures of 80 degrees C and 100 degrees C (P < 0.001). Viable cells in the RF ablation tissue area were not found in the microscopic examination. Conclusion: The most effective cell destruction in terms of width and depth was achieved at 90 degrees C, which was also the optimal temperature for tissue impedance. RF ablation of renal cells eliminated all viable cells.
Resumo:
We report a highly efficient switch built from an organic molecule assembled between single-wall carbon nanotube electrodes. We theoretically show that changes in the distance between the electrodes alter the molecular conformation within the gap, affecting in a dramatic way the electronic and charge transport properties, with an on/off ratio larger than 300. This opens up the perspective of combining molecular electronics with carbon nanotubes, bringing great possibilities for the design of nanodevices.
Resumo:
omega-Transaminases have been evaluated as biocatalysts in the reductive amination of organoselenium acetophenones to the corresponding amines, and in the kinetic resolution of racemic organoselenium amines. Kinetic resolution proved to be more efficient than the asymmetric reductive amination. By using these methodologies we were able to obtain both amine enantiomers in high enantiomeric excess (up to 99%). Derivatives of the obtained optically pure o-selenium 1-phenylethyl amine were evaluated as ligands in the palladium-catalyzed asymmetric alkylation, giving the alkylated product in up to 99% ee.
Resumo:
Direct borohydride fuel cells are promising high energy density portable generators. However, their development remains limited by the complexity of the anodic reaction: The borohydride oxidation reaction (BOR) kinetics is slow and occurs at high overvoltages, while it may compete with the heterogeneous hydrolysis of BH(4)(-). Nevertheless, one usually admits that gold is rather inactive toward the heterogeneous hydrolysis of BH(4)(-) and presents some activity regarding the BOR, therefore yielding to the complete eight-electron BOR. In the present paper, by coupling online mass spectrometry to electrochemistry, we in situ monitored the H(2) yield during BOR experiments on sputtered gold electrodes. Our results show non-negligible H(2) generation on Au on the whole BOR potential range (0-0.8 V vs reversible hydrogen electrode), thus revealing that gold cannot be considered as a faradaic-efficient BOR electrocatalyst. We further propose a relevant reaction pathway for the BOR on gold that accounts for these findings.
Resumo:
The 'blue copper' enzyme bilirubin oxidase from Myrothecium verrucaria shows significantly enhanced adsorption on a pyrolytic graphite 'edge' (PGE) electrode that has been covalently modified with naphthyl-2-carboxylate functionalities by diazonium coupling. Modified electrodes coated with bilirubin oxidase show electrocatalytic voltammograms for the direct, four-electron reduction of O(2) by bilirubin oxidase with up to four times the current density of an unmodified PGE electrode. Electrocatalytic voltammograms measured with a rapidly rotating electrode (to remove effects of O(2) diffusion limitation) have a complex shape (an almost linear dependence of current on potential below pH 6) that is similar regardless of how PGE is chemically modified. Importantly, the same waveform is observed if bilirubin oxidase is adsorbed on Au(111) or Pt(111) single-crystal electrodes (at which activity is short-lived). The electrocatalytic behavior of bilirubin oxidase, including its enhanced response on chemically-modified PGE, therefore reflects inherent properties that do not depend on the electrode material. The variation of voltammetric waveshapes and potential-dependent (O(2)) Michaelis constants with pH and analysis in terms of the dispersion model are consistent with a change in rate-determining step over the pH range 5-8: at pH 5, the high activity is limited by the rate of interfacial redox cycling of the Type 1 copper whereas at pH 8 activity is much lower and a sigmoidal shape is approached, showing that interfacial electron transfer is no longer a limiting factor. The electrocatalytic activity of bilirubin oxidase on Pt(111) appears as a prominent pre-wave to electrocatalysis by Pt surface atoms, thus substantiating in a single, direct experiment that the minimum overpotential required for O(2) reduction by the enzyme is substantially smaller than required at Pt. At pH 8, the onset of O(2) reduction lies within 0.14 V of the four-electron O(2)/2H(2)O potential.
Resumo:
Background: Leptin-deficient mice (Lep(ob)/Lep(ob), also known as ob/ob) are of great importance for studies of obesity, diabetes and other correlated pathologies. Thus, generation of animals carrying the Lep(ob) gene mutation as well as additional genomic modifications has been used to associate genes with metabolic diseases. However, the infertility of Lep(ob)/Lep(ob) mice impairs this kind of breeding experiment. Objective: To propose a new method for production of Lep(ob)/Lep(ob) animals and Lep(ob)/Lep(ob)-derived animal models by restoring the fertility of Lep(ob)/Lep(ob) mice in a stable way through white adipose tissue transplantations. Methods: For this purpose, 1 g of peri-gonadal adipose tissue from lean donors was used in subcutaneous transplantations of Lep(ob)/Lep(ob) animals and a crossing strategy was established to generate Lep(ob)/Lep(ob)-derived mice. Results: The presented method reduced by four times the number of animals used to generate double transgenic models (from about 20 to 5 animals per double mutant produced) and minimized the number of genotyping steps (from 3 to 1 genotyping step, reducing the number of Lep gene genotyping assays from 83 to 6). Conclusion: The application of the adipose transplantation technique drastically improves both the production of Lep(ob)/Lep(ob) animals and the generation of Lep(ob)/Lep(ob)-derived animal models. International Journal of Obesity (2009) 33, 938-944; doi: 10.1038/ijo.2009.95; published online 16 June 2009