991 resultados para Economics, Hospital
Resumo:
Hospital acquired infections (HAI) are costly but many are avoidable. Evaluating prevention programmes requires data on their costs and benefits. Estimating the actual costs of HAI (a measure of the cost savings due to prevention) is difficult as HAI changes cost by extending patient length of stay, yet, length of stay is a major risk factor for HAI. This endogeneity bias can confound attempts to measure accurately the cost of HAI. We propose a two-stage instrumental variables estimation strategy that explicitly controls for the endogeneity between risk of HAI and length of stay. We find that a 10% reduction in ex ante risk of HAI results in an expected savings of £693 ($US 984).
Resumo:
This study examines hospital care system performance in Iran. We first briefly review hospital care delivery system in Iran. Then, the hospital care system in Iran has been investigated from financial, utilization, and quality perspectives. In particular, we examined the extent to which health care system in Iran protects people from the financial consequence of health care expenses and whether inpatient care distributed according to need. We also empirically analyzed the quality of hospital care in Iran using patient satisfaction information collected in a national health service survey. The Iranian health care system consists of unequal access to hospital care; mismatch between the distribution of services and inpatients' need; and high probability of financial catastrophe due to out-of-pocket payments for inpatient services. Our analysis indicates that the quality of hospital care among Iranian provinces favors patients residing in provinces with high numbers of hospital beds per capita such as Esfahan and Yazd. Patients living in provinces with low levels of accessibility to hospital care (e.g. Gilan, Kermanshah, Hamadan, Chahar Mahall and Bakhtiari, Khuzestan, and Sistan and Baluchestan) receive lower-quality services. These findings suggest that policymakers in Iran should work on several fronts including utilization, financing, and service quality to improve hospital care.
Resumo:
"April 1995."
Resumo:
The objective of the present study was to predict the economic consequences of healthcare-acquired infections arising among admissions to Australian acute care hospitals. A quantitative algorithm informed by epidemiological and economic data was developed. All acute care hospitals in Australia were included in the study and the participants included all admissions to general medical and general surgical specialties. The main outcome measures were the numbers of cases of healthcare-acquired infection and bed days lost annually. It was estimated that there are 175 153 (95% credible interval 155 911 : 195 168) cases of healthcare-acquired infection among admissions to Australian hospitals annually, and the extra stay in hospital to treat symptoms accounts for 854 289 bed days (95% credible interval 645 091 : 1 096 244). If rates were reduced by 1%, then 150 158 bed days would be released for alternative uses. This would allow ~38 500 new admissions. Healthcare-acquired infections in patients cause bed blocks in Australian hospitals. The cost-effectiveness of hospital services might be improved by allocating more resources to infection control, releasing beds and allowing new admissions. There exists an opportunity to improve the efficiency of the Australian health care system.
Resumo:
Travaux effectués dans le cadre de l'étude "Case Mix" menée par l'Institut universitaire de médecine sociale et préventive de Lausanne et le Service de la santé publique et de la planification sanitaire du canton de Vaud, en collaboration avec les cantons de Berne, Fribourg, Genève, Jura, Neuchâtel, Soleure, Tessin et Valais
Resumo:
"HRP-0906516."
Resumo:
Background: Reducing rates of healthcare acquired infection has been identified by the Australian Commission on Safety and Quality in Health Care as a national priority. One of the goals is the prevention of central venous catheter-related bloodstream infection (CR-BSI). At least 3,500 cases of CR-BSI occur annually in Australian hospitals, resulting in unnecessary deaths and costs to the healthcare system between $25.7 and $95.3 million. Two approaches to preventing these infections have been proposed: use of antimicrobial catheters (A-CVCs); or a catheter care and management ‘bundle’. Given finite healthcare budgets, decisions about the optimal infection control policy require consideration of the effectiveness and value for money of each approach. Objectives: The aim of this research is to use a rational economic framework to inform efficient infection control policy relating to the prevention of CR-BSI in the intensive care unit. It addresses three questions relating to decision-making in this area: 1. Is additional investment in activities aimed at preventing CR-BSI an efficient use of healthcare resources? 2. What is the optimal infection control strategy from amongst the two major approaches that have been proposed to prevent CR-BSI? 3. What uncertainty is there in this decision and can a research agenda to improve decision-making in this area be identified? Methods: A decision analytic model-based economic evaluation was undertaken to identify an efficient approach to preventing CR-BSI in Queensland Health intensive care units. A Markov model was developed in conjunction with a panel of clinical experts which described the epidemiology and prognosis of CR-BSI. The model was parameterised using data systematically identified from the published literature and extracted from routine databases. The quality of data used in the model and its validity to clinical experts and sensitivity to modelling assumptions was assessed. Two separate economic evaluations were conducted. The first evaluation compared all commercially available A-CVCs alongside uncoated catheters to identify which was cost-effective for routine use. The uncertainty in this decision was estimated along with the value of collecting further information to inform the decision. The second evaluation compared the use of A-CVCs to a catheter care bundle. We were unable to estimate the cost of the bundle because it is unclear what the full resource requirements are for its implementation, and what the value of these would be in an Australian context. As such we undertook a threshold analysis to identify the cost and effectiveness thresholds at which a hypothetical bundle would dominate the use of A-CVCs under various clinical scenarios. Results: In the first evaluation of A-CVCs, the findings from the baseline analysis, in which uncertainty is not considered, show that the use of any of the four A-CVCs will result in health gains accompanied by cost-savings. The MR catheters dominate the baseline analysis generating 1.64 QALYs and cost-savings of $130,289 per 1.000 catheters. With uncertainty, and based on current information, the MR catheters remain the optimal decision and return the highest average net monetary benefits ($948 per catheter) relative to all other catheter types. This conclusion was robust to all scenarios tested, however, the probability of error in this conclusion is high, 62% in the baseline scenario. Using a value of $40,000 per QALY, the expected value of perfect information associated with this decision is $7.3 million. An analysis of the expected value of perfect information for individual parameters suggests that it may be worthwhile for future research to focus on providing better estimates of the mortality attributable to CR-BSI and the effectiveness of both SPC and CH/SSD (int/ext) catheters. In the second evaluation of the catheter care bundle relative to A-CVCs, the results which do not consider uncertainty indicate that a bundle must achieve a relative risk of CR-BSI of at least 0.45 to be cost-effective relative to MR catheters. If the bundle can reduce rates of infection from 2.5% to effectively zero, it is cost-effective relative to MR catheters if national implementation costs are less than $2.6 million ($56,610 per ICU). If the bundle can achieve a relative risk of 0.34 (comparable to that reported in the literature) it is cost-effective, relative to MR catheters, if costs over an 18 month period are below $613,795 nationally ($13,343 per ICU). Once uncertainty in the decision is considered, the cost threshold for the bundle increases to $2.2 million. Therefore, if each of the 46 Level III ICUs could implement an 18 month catheter care bundle for less than $47,826 each, this approach would be cost effective relative to A-CVCs. However, the uncertainty is substantial and the probability of error in concluding that the bundle is the cost-effective approach at a cost of $2.2 million is 89%. Conclusions: This work highlights that infection control to prevent CR-BSI is an efficient use of healthcare resources in the Australian context. If there is no further investment in infection control, an opportunity cost is incurred, which is the potential for a more efficient healthcare system. Minocycline/rifampicin catheters are the optimal choice of antimicrobial catheter for routine use in Australian Level III ICUs, however, if a catheter care bundle implemented in Australia was as effective as those used in the large studies in the United States it would be preferred over the catheters if it was able to be implemented for less than $47,826 per Level III ICU. Uncertainty is very high in this decision and arises from multiple sources. There are likely greater costs to this uncertainty for A-CVCs, which may carry hidden costs, than there are for a catheter care bundle, which is more likely to provide indirect benefits to clinical practice and patient safety. Research into the mortality attributable to CR-BSI, the effectiveness of SPC and CH/SSD (int/ext) catheters and the cost and effectiveness of a catheter care bundle in Australia should be prioritised to reduce uncertainty in this decision. This thesis provides the economic evidence to inform one area of infection control, but there are many other infection control decisions for which information about the cost-effectiveness of competing interventions does not exist. This work highlights some of the challenges and benefits to generating and using economic evidence for infection control decision-making and provides support for commissioning more research into the cost-effectiveness of infection control.
Resumo:
The evolution of organisms that cause healthcare acquired infections (HAI) puts extra stress on hospitals already struggling with rising costs and demands for greater productivity and cost containment. Infection control can save scarce resources, lives, and possibly a facility’s reputation, but statistics and epidemiology are not always sufficient to make the case for the added expense. Economics and Preventing Healthcare Acquired Infection presents a rigorous analytic framework for dealing with this increasingly serious problem. ----- Engagingly written for the economics non-specialist, and brimming with tables, charts, and case examples, the book lays out the concepts of economic analysis in clear, real-world terms so that infection control professionals or infection preventionists will gain competence in developing analyses of their own, and be confident in the arguments they present to decision-makers. The authors: ----- Ground the reader in the basic principles and language of economics. ----- Explain the role of health economists in general and in terms of infection prevention and control. ----- Introduce the concept of economic appraisal, showing how to frame the problem, evaluate and use data, and account for uncertainty. ----- Review methods of estimating and interpreting the costs and health benefits of HAI control programs and prevention methods. ----- Walk the reader through a published economic appraisal of an infection reduction program. ----- Identify current and emerging applications of economics in infection control. ---- Economics and Preventing Healthcare Acquired Infection is a unique resource for practitioners and researchers in infection prevention, control and healthcare economics. It offers valuable alternate perspective for professionals in health services research, healthcare epidemiology, healthcare management, and hospital administration. ----- Written for: Professionals and researchers in infection control, health services research, hospital epidemiology, healthcare economics, healthcare management, hospital administration; Association of Professionals in Infection Control (APIC), Society for Healthcare Epidemiologists of America (SHEA)
Resumo:
Background. The objective is to estimate the cost-effectiveness of an intervention that reduces hospital readmission among older people at high risk. A cost-effectiveness model to estimate the costs and health benefits of the intervention was implemented. Methodology/Principal Findings. The model used data from a randomised controlled trial conducted in an Australian tertiary metropolitan hospital. Participants were acute medical admissions aged >65 years with at least one risk factor for readmission: multiple comorbidities, impaired functionality, aged >75 years, 30 recent multiple admissions, poor social support, history of depression. The intervention was a comprehensive nursing and physiotherapy assessment and an individually tailored program of exercise strategies and nurse home visits with telephone follow-up; commencing in hospital and continuing following discharge for 24 weeks. The change to cost outcomes, including the costs of implementing the intervention and all subsequent use of health care services, and, the change to health benefits, represented by quality adjusted life years, were estimated for the intervention as compared to existing practice. The mean change to total costs and quality 38 adjusted life years for an average individual over 24 weeks participating in the intervention were: cost savings of $333 (95% Bayesian credible interval $-1,932:1,282) and 0.118 extra quality adjusted life years (95% Bayesian credible interval 0.1:0.136). The mean net41 monetary-benefit per individual for the intervention group compared to the usual care condition was $7,907 (95% Bayesian credible interval $5,959:$9,995) for the 24 week period. Conclusions/Significance. The estimation model that describes this intervention predicts cost savings and improved health outcomes. A decision to remain with existing practices causes unnecessary costs and reduced health. Decision makers should consider adopting this 46 program for elderly hospitalised patients.
Resumo:
Background: Previous attempts at costing infection control programmes have tended to focus on accounting costs rather than economic costs. For studies using economic costs, estimates tend to be quite crude and probably underestimate the true cost. One of the largest costs of any intervention is staff time, but this cost is difficult to quantify and has been largely ignored in previous attempts. Aim: To design and evaluate the costs of hospital-based infection control interventions or programmes. This article also discusses several issues to consider when costing interventions, and suggests strategies for overcoming these issues. Methods: Previous literature and techniques in both health economics and psychology are reviewed and synthesized. Findings: This article provides a set of generic, transferable costing guidelines. Key principles such as definition of study scope and focus on large costs, as well as pitfalls (e.g. overconfidence and uncertainty), are discussed. Conclusion: These new guidelines can be used by hospital staff and other researchers to cost their infection control programmes and interventions more accurately.
Resumo:
Background Falls are one of the most frequently occurring adverse events that impact upon the recovery of older hospital inpatients. Falls can threaten both immediate and longer-term health and independence. There is need to identify cost-effective means for preventing falls in hospitals. Hospital-based falls prevention interventions tested in randomized trials have not yet been subjected to economic evaluation. Methods Incremental cost-effectiveness analysis was undertaken from the health service provider perspective, over the period of hospitalization (time horizon) using the Australian Dollar (A$) at 2008 values. Analyses were based on data from a randomized trial among n = 1,206 acute and rehabilitation inpatients. Decision tree modeling with three-way sensitivity analyses were conducted using burden of disease estimates developed from trial data and previous research. The intervention was a multimedia patient education program provided with trained health professional follow-up shown to reduce falls among cognitively intact hospital patients. Results The short-term cost to a health service of one cognitively intact patient being a faller could be as high as A$14,591 (2008). The education program cost A$526 (2008) to prevent one cognitively intact patient becoming a faller and A$294 (2008) to prevent one fall based on primary trial data. These estimates were unstable due to high variability in the hospital costs accrued by individual patients involved in the trial. There was a 52% probability the complete program was both more effective and less costly (from the health service perspective) than providing usual care alone. Decision tree modeling sensitivity analyses identified that when provided in real life contexts, the program would be both more effective in preventing falls among cognitively intact inpatients and cost saving where the proportion of these patients who would otherwise fall under usual care conditions is at least 4.0%. Conclusions This economic evaluation was designed to assist health care providers decide in what circumstances this intervention should be provided. If the proportion of cognitively intact patients falling on a ward under usual care conditions is 4% or greater, then provision of the complete program in addition to usual care will likely both prevent falls and reduce costs for a health service.
Resumo:
To the Editor—In a recent review article in Infection Control and Hospital Epidemiology, Umscheid et al1 summarized published data on incidence rates of catheter-associated bloodstream infection (CABSI), catheter-associated urinary tract infection (CAUTI), surgical site infection (SSI), and ventilator- associated pneumonia (VAP); estimated how many cases are preventable; and calculated the savings in hospital costs and lives that would result from preventing all preventable cases. Providing these estimates to policy makers, political leaders, and health officials helps to galvanize their support for infection prevention programs. Our concern is that important limitations of the published studies on which Umscheid and colleagues built their findings are incompletely addressed in this review. More attention needs to be drawn to the techniques applied to generate these estimates...
Resumo:
Objective: To estimate the relative inpatient costs of hospital-acquired conditions. Methods: Patient level costs were estimated using computerized costing systems that log individual utilization of inpatient services and apply sophisticated cost estimates from the hospital's general ledger. Occurrence of hospital-acquired conditions was identified using an Australian ‘condition-onset' flag for diagnoses not present on admission. These were grouped to yield a comprehensive set of 144 categories of hospital-acquired conditions to summarize data coded with ICD-10. Standard linear regression techniques were used to identify the independent contribution of hospital-acquired conditions to costs, taking into account the case-mix of a sample of acute inpatients (n = 1,699,997) treated in Australian public hospitals in Victoria (2005/06) and Queensland (2006/07). Results: The most costly types of complications were post-procedure endocrine/metabolic disorders, adding AU$21,827 to the cost of an episode, followed by MRSA (AU$19,881) and enterocolitis due to Clostridium difficile (AU$19,743). Aggregate costs to the system, however, were highest for septicaemia (AU$41.4 million), complications of cardiac and vascular implants other than septicaemia (AU$28.7 million), acute lower respiratory infections, including influenza and pneumonia (AU$27.8 million) and UTI (AU$24.7 million). Hospital-acquired complications are estimated to add 17.3% to treatment costs in this sample. Conclusions: Patient safety efforts frequently focus on dramatic but rare complications with very serious patient harm. Previous studies of the costs of adverse events have provided information on ‘indicators’ of safety problems rather than the full range of hospital-acquired conditions. Adding a cost dimension to priority-setting could result in changes to the focus of patient safety programmes and research. Financial information should be combined with information on patient outcomes to allow for cost-utility evaluation of future interventions.
Resumo:
Since the beginning of 1980s, the Iranian health care system has undergone several reforms designed to increase accessibility of health services. Notwithstanding these reforms, out-of-pocket payments which create a barrier to access health services contribute almost half of total health are financing in Iran. This study aimed to provide a greater understanding about the inequality and determinants of the out-of-pocket expenditure (OOPE) and the related catastrophic expenditure (CE) for hospital services in Iran using a nationwide survey data, the 2003 Utilisation of Health Services Survey (UHSS). The concentration index and the Heckman selection model were used to assess inequality and factors associated with these expenditures. Inequality analysis suggests that the CE is concentrated among households in lower socioeconomic levels. The results of the Heckman selection model indicate that factors such as length of stay, admission to a hospital owned by private sector or Ministry of Health and Medical Education, and living in remote areas are positively associated with higher OOPE. Results of the ordered-probit selection model demonstrate that length of stay, lower household wealth index, and admission to a private hospital are major factors contributing to the increase in the probability of CE. Also, we find that households living in East Azarbaijan, Kordestan and Sistan and Balochestan face a higher level of CE. Based on our findings, the current employer-sponsored health insurance system does not offer equal protection against hospital expenditure in Iran. It seems that a single universal health insurance scheme that covers health services for all Iranian—regardless of their employment status—can better protect households from catastrophic health spending.