996 resultados para Earthquake-volcano interaction
Resumo:
Large earthquakes may strongly influence the activity of volcanoes through static and dynamic processes. In this study, we quantify the static and dynamic stress change on 27 volcanoes in Central America, after the Mw 7.6 Costa Rica earthquake of 5 September 2012. Following this event, 8 volcanoes showed signs of activity. We calculated the static stress change due to the earthquake on hypothetical faults under these volcanoes with Coulomb 3.3. For the dynamic stress change, we computed synthetic seismograms to simulate the waveforms at these volcanoes. We then calculated the Peak Dynamic Stress (PDS) from the modeled peak ground velocities. The resulting values are from moderate to minor changes in stress (10-1-10-2 MPa) with the PDS values generally an order of magnitude larger than the static stress change. Although these values are small, they may be enough to trigger a response by the volcanoes, and are on the order of stress changes implicated in many other studies of volcano and earthquake triggering by large earthquakes. This study provides insight into the poorly-constrained mechanism for remote triggering.
Resumo:
Earthquake prediction research has searched for both informational phenomena, those that provide information about earthquake hazards useful to the public, and causal phenomena, causally related to the physical processes governing failure on a fault, to improve our understanding of those processes. Neither informational nor causal phenomena are a subset of the other. I propose a classification of potential earthquake predictors of informational, causal, and predictive phenomena, where predictors are causal phenomena that provide more accurate assessments of the earthquake hazard than can be gotten from assuming a random distribution. Achieving higher, more accurate probabilities than a random distribution requires much more information about the precursor than just that it is causally related to the earthquake.
Resumo:
Mode of access: Internet.
Resumo:
Plates printed on both sides.
Resumo:
Under seismic loads neither the response of the pile nor the response of ground are independent of each other, contrary what is normally assumed. In seismic design of buildings, dynamic response of a structure is determined by assuming a fixed base on sub-grade and neglecting the physical interaction between foundation and soil profile in which it is embedded. However, the seismic response of pile foundations in vibration sensitive soil profiles is significantly affected by the behaviour of supporting soil. This research uses validated Finite Element techniques to simulate the seismic behaviour of pile foundations embedded in multilayered vibration sensitive soils.
Resumo:
Indonesia is a country spread across wide-ranging archipelago, located in South East Asia between two oceans, the Indian and the Pacific. Indonesia is well known as an active tectonic region because it lies on top of three major active tectonic plates: the Eurasian in the North, the Indian Ocean-Australian in the South, and the Pacific plate in the East. The southern and eastern part of the country features a range of volcanic arcs, volcanic mountains, and lowlands with 500 young volcanoes, of which 128 are active and thus representing 15% of the world’s active volcanoes. In the period 2002-2007, approximately 1782 disasters occurred, with hundreds of thousands of lives lost and billions of rupiah in losses incurred: (Floods - 1183 instances, cyclones - 272 instances, and landslides - 252 instances). Of these, the 2004 Aceh tsunami and the 2006 central Java earthquake (impacting predominantly city and suburbs of Yogyakarta) were the most significant. Even so, disaster management experts believe lessons learnt from the two major natural disasters needs to be formalised into laws and institutions before another disaster occurs, regardless of the type of natural disaster – i.e. Volcano eruption or landslide; as opposed to tsunami or earthquake. Following in the wake of disasters occurring in Yogyakarta, many of its community members responded by banding together as one, with the determination of rebuilding its villages and cities through the spirit of ‘gotong royong’. The idea of social interaction; in particular as a collective, consensual, and cooperative nation; has predominantly formed the ideological basis of Indonesia’s societal nature. Many Indonesian terms cohere to this ideology, such as: ‘koperasi” (cooperatives as the basis of economic interactions), ‘musyawarah’ (consensual nature in decision making), and ‘gotong royong’ (mutual assistance). ‘Gotong royong’ has become a key cultural operator in Indonesia, in particular In Jogjakarta. Appropriately so as ‘gotong royong’ is depicted from the traditional Javanese village, where labour is accomplished through reciprocal exchange and the villagers are motivated by a general ethos of selfishness and concern for the common good. The culture of ‘gotong royong’ promotes positive values such as social harmony and mutual reciprocation in disaster-affected areas provides the necessary spirit needed to endure the hardships and for all involved. While gotong royong emphasises the positive notions of mutual family support and deep community level activity there is a potential for contrast against government lead disaster response and recovery management activities especially in settings where sporadic governance mechanisms exist and transparency and accountability in the recovery process of public infrastructure assets have been questioned. This paper thus questions whether Gotong Royong is a double-edged sword, and explores the potential marriage of community values and governance mechanisms for future disaster management planning and practice.
Resumo:
Spatial variation of seismic ground motions is caused by incoherence effect, wave passage, and local site conditions. This study focuses on the effects of spatial variation of earthquake ground motion on the responses of adjacent reinforced concrete (RC) frame structures. The adjacent buildings are modeled considering soil-structure interaction (SSI) so that the buildings can be interacted with each other under uniform and non-uniform ground motions. Three different site classes are used to model the soil layers of SSI system. Based on fast Fourier transformation (FFT), spatially correlated non-uniform ground motions are generated compatible with known power spectrum density function (PSDF) at different locations. Numerical analyses are carried out to investigate the displacement responses and the absolute maximum base shear forces of adjacent structures subjected to spatially varying ground motions. The results are presented in terms of related parameters affecting the structural response using three different types of soil site classes. The responses of adjacent structures have changed remarkably due to spatial variation of ground motions. The effect can be significant on rock site rather than clay site.
Resumo:
Lake Purrumbete maar is located in the intraplate, monogenetic Newer Volcanics Province in southeastern Australia. The extremely large crater of 3000. m in diameter formed on an intersection of two fault lines and comprises at least three coalesced vents. The evolution of these vents is controlled by the interaction of the tectonic setting and the properties of both hard and soft rock aquifers. Lithics in the maar deposits originate from country rock formations less than 300. m deep, indicating that the large size of the crater cannot only be the result of the downwards migration of the explosion foci in a single vent. Vertical crater walls and primary inward dipping beds evidence that the original size of the crater has been largely preserved. Detailed mapping of the facies distributions, the direction of transport of base surges and pyroclastic flows, and the distribution of ballistic block fields, form the basis for the reconstruction of the complex eruption history,which is characterised by alternations of the eruption style between relatively dry and wet phreatomagmatic conditions, and migration of the vent location along tectonic structures. Three temporally separated eruption phases are recognised, each starting at the same crater located directly at the intersection of two local fault lines. Activity then moved quickly to different locations. A significant volcanic hiatus between two of the three phases shows that the magmatic system was reactivated. The enlargement of especially the main crater by both lateral and vertical growth led to the interception of the individual craters and the formation of the large circular crater. Lake Purrumbete maar is an excellent example of how complicated the evolution of large, seemingly simple, circular maar volcanoes can be, and raises the question if these systems are actually monogenetic.
Resumo:
This thesis presents a civil engineering approach to active control for civil structures. The proposed control technique, termed Active Interaction Control (AIC), utilizes dynamic interactions between different structures, or components of the same structure, to reduce the resonance response of the controlled or primary structure under earthquake excitations. The primary control objective of AIC is to minimize the maximum story drift of the primary structure. This is accomplished by timing the controlled interactions so as to withdraw the maximum possible vibrational energy from the primary structure to an auxiliary structure, where the energy is stored and eventually dissipated as the external excitation decreases. One of the important advantages of AIC over most conventional active control approaches is the very low external power required.
In this thesis, the AIC concept is introduced and a new AIC algorithm, termed Optimal Connection Strategy (OCS) algorithm, is proposed. The efficiency of the OCS algorithm is demonstrated and compared with two previously existing AIC algorithms, the Active Interface Damping (AID) and Active Variable Stiffness (AVS) algorithms, through idealized examples and numerical simulations of Single- and Multi-Degree-of Freedom systems under earthquake excitations. It is found that the OCS algorithm is capable of significantly reducing the story drift response of the primary structure. The effects of the mass, damping, and stiffness of the auxiliary structure on the system performance are investigated in parametric studies. Practical issues such as the sampling interval and time delay are also examined. A simple but effective predictive time delay compensation scheme is developed.
Resumo:
Piles passing through sloping liquefiable deposits are prone to lateral loading if these deposits liquefy and flow during earthquakes. These lateral loads caused by the relative soil-pile movement will induce bending in the piles and may result in failure of the piles or excessive pile-head displacement. Whilst the weak nature of the flowing liquefied soil would suggest that only small loads would be exerted on the piles, it is known from case histories that piles do fail owing to the influence of laterally spreading soils. It will be shown, based on dynamic centrifuge test data, that dilatant behaviour of soil close to the pile is the major cause of these considerable transient lateral loads which are transferred to the pile. This paper reports the results of geotechnical centrifuge tests in which models of gently sloping liquefiable sand with pile foundations passing through them were subjected to earthquake excitation. The soil close to the pile was instrumented with pore-pressure transducers and contact stress cells in order to monitor the interaction between soil and pile and to track the soil stress state both upslope and downslope of the pile. The presence of instrumentation measuring pore-pressure and lateral stress close to the pile in the research described in this paper gives the opportunity to better study the soil stress state close to the pile and to compare the loads measured as being applied to the piles by the laterally spreading soils with those suggested by the JRA design code. This test data shows that lateral stresses much greater than one might expect from calculations based on the residual strength of liquefied soil may be applied to piles in flowing liquefied slopes owing to the dilative behaviour of the liquefied soil. It is shown at least for the particular geometry studied that the current JRA design code can be un-conservative by a factor of three for these dilation-affected transient lateral loads.
Resumo:
Numerous structures uplift under the influence of strong ground motion. Although many researchers have investigated the effects of base uplift on very stiff (ideally rigid) structures, the rocking response of flexible structures has received less attention. Related practical analysis methods treat these structures with simplified 'equivalent' oscillators without directly addressing the interaction between elasticity and rocking. This paper addresses the fundamental dynamics of flexible rocking structures. The nonlinear equations of motion, derived using a Lagrangian formulation for large rotations, are presented for an idealized structural model. Particular attention is devoted to the transition between successive phases; a physically consistent classical impact framework is utilized alongside an energy approach. The fundamental dynamic properties of the flexible rocking system are compared with those of similar linear elastic oscillators and rigid rocking structures, revealing the distinct characteristics of flexible rocking structures. In particular, parametric analysis is performed to quantify the effect of elasticity on uplift, overturning instability, and harmonic response, from which an uplifted resonance emerges. The contribution of stability and strength to the collapse of flexible rocking structures is discussed. © 2012 John Wiley & Sons, Ltd.