904 resultados para Earth dams
Resumo:
In the present study, results of reliability analyses of four selected rehabilitated earth dam sections, i.e., Chang, Tapar, Rudramata, and Kaswati, under pseudostatic loading conditions, are presented. Using the response surface methodology, in combination with first order reliability method and numerical analysis, the reliability index (beta) values are obtained and results are interpreted in conjunction with conventional factor of safety values. The influence of considering variability in the input soil shear strength parameters, horizontal seismic coefficient (alpha(h)), and location of reservoir full level on the stability assessment of the earth dam sections is discussed in the probabilistic framework. A comparison of results with those obtained from other method of reliability analysis, viz., Monte Carlo simulations combined with limit equilibrium approach, provided a basis for discussing the stability of earth dams in probabilistic terms, and the results of the analysis suggest that the considered earth dam sections are reliable and are expected to perform satisfactorily.
Resumo:
This research investigated the unconfined flow through dams. The hydraulic conductivity was modeled as spatially random field following lognormal distribution. Results showed that the seepage flow produced from the stochastic solution was smaller than its deterministic value. In addition, the free surface was observed to exit at a point lower than that obtained from the deterministic solution. When the hydraulic conductivity was strongly correlated in the horizontal direction than the vertical direction, the flow through the dam has markedly increased. It is suggested that it may not be necessary to construct a core in dams made from soils that exhibit high degree of variability.
Resumo:
Photocopy.
Resumo:
Mode of access: Internet.
Resumo:
The drawdown of reservoirs can significantly affect the stability of upstream slopes of earth dams. This is due to the removal of the balancing hydraulic forces acting on the dams and the undrained condition within the upstream slope soils. In such scenarios, the stability of the slopes can be influenced by a range of factors including drawdown rates, slope inclination and soil properties. This paper investigates the effects of drawdown rate, saturated hydraulic conductivity and unsaturated shear strength of dam materials on the stability of the upstream slope of an earth dam. In this study, the analysis of pore-water pressure changes within the upstream slope during reservoir drawdown was coupled with the slope stability analysis using the general limit equilibrium method. The results of the analysis suggested that a decrease in the reservoir water level caused the stability of the upstream slope to decrease. The dam embankment constructed with highly permeable soil was found to be more stable during drawdown scenarios, compared to others. Further, lower drawdown rates resulted in a higher safety factor for the upstream slope. Also, the safety factor of the slope calculated using saturated shear strength properties of the dam materials was slightly higher than that calculated using unsaturated shear strength properties. In general, for all the scenarios analysed, the lowest safety factor was found to be at the reservoir water level of about 2/3 of drawdown regime.
Resumo:
The Kachchh region of Gujarat, India bore the brunt of a disastrous earthquake of magnitude M-w=7.6 that occurred on January 26, 2001. The major cause of failure of various structures including earthen dams was noted to be the presence of liquefiable alluvium in the foundation soil. Results of back-analysis of failures of Chang, Tappar, Kaswati and Rudramata earth dams using pseudo-static limit equilibrium approach presented in this paper confirm that the presence of liquefiable layer contributed to lesser factors of safety leading to a base type of failure that was also observed in the field. Following the earthquake, earth dams have been rehabilitated by the concerned authority and it is imperative that the reconstructed sections of earth dams be reanalyzed. It is also increasingly realized that risk assessment of dams in view of the large-scale investment made and probabilistic analysis is necessary. In this study, it is demonstrated that the probabilistic approach when used in conjunction with deterministic approach helps in providing a rational solution for quantification of safety of the dam and in the estimation of risk associated with the dam construction. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
"February 1985."
Resumo:
Este trabalho apresenta um estudo de fluxo de água em barragens de terra, em regimes permanente e transiente, com a utilização do Método de Elementos Finitos. No estudo de fluxo em regime permanente duas formas de abordar o problema são apresentadas e comparadas. A primeira considera, para a discretização da malha de elementos finitos, somente a região saturada, de maneira que a linha freática é obtida através de ajustes desta malha de elementos finitos. A segunda considera toda a região saturada-insaturada, sendo discretizado todo o domínio físico da barragem. A malha de elementos finitos não é modificada ao longo das iterações e a linha freática é obtida por interpolação dentro dos elementos, em função dos valores nodais do potencial de pressões. O desenvolvimento teórico das equações utilizadas para as duas formas de abardagem é apresentado, mostrando onde elas diferem entre si. No estudo de fluxo em regime transiente é utilizado apenas o esquema de malha fixa de elementos finitos.
Resumo:
The monitoring of Earth dam makes use of visual inspection and instrumentation to identify and characterize the deterioration that compromises the security of earth dams and associated structures. The visual inspection is subjective and can lead to misinterpretation or omission of important information and, some problems are detected too late. The instrumentation are efficient but certain technical or operational issues can cause restrictions. Thereby, visual inspections and instrumentation can lead to a lack of information. Geophysics offers consolidated, low-cost methods that are non-invasive, non-destructive and low cost. They have a strong potential and can be used assisting instrumentation. In the case that a visual inspection and strumentation does not provide all the necessary information, geophysical methods would provide more complete and relevant information. In order to test these theories, geophysical acquisitions were performed using Georadar (GPR), Electric resistivity, Seismic refraction, and Refraction Microtremor (ReMi) on the dike of the dam in Sant Llorenç de Montgai, located in the province of Lleida, 145 km from Barcelona, Catalonia. The results confirmed that the geophysical methods used each responded satisfactorily to the conditions of the earth dike, the anomalies present and the geological features found, such as alluvium and carbonate and evaporite rocks. It has also been confirmed that these methods, when used in an integrated manner, are able to reduce the ambiguities in individual interpretations. They facilitate improved imaging of the interior dikes and of major geological features, thus inspecting the massif and its foundation. Consequently, the results obtained in this study demonstrated that these geophysical methods are sufficiently effective for inspecting earth dams and they are an important tool in the instrumentation and visual inspection of the security of the dams
Resumo:
The act of containing water is one of the most practiced by the civilizations along history, in the will to increase the offer of water to many uses. The raise of environmental worries surround many human activities has given a big attention to dams. Indeed, the environmental consequences about dams are proporcional to their size, what gives to the big dams a more detailed Project and a bigger political concerning that increases the built, estability and maintenance of them. Then, the projects of medium and small dams are weak, limitaded to handbooks, textbooks and empirical recommendations, while the constructions of small dams are growing everytime more. With that being said, the present work intends to analise the geological and geotechnical conditionants that can cause break of small earth dams by making a case study in the Jaguari Mirim Watershed, located in the city of São João da Boa Vista (SP), and can be used to encourage the concern with small dams. In the area of study were identificaded, from satellite images, 248 dams. The map of physiographical compartmentalization defined by Pilachevsky (2013) was used to define the locations in the study área that would have bigger risk to the break of dams. Then, 9 of this dams were analised in field research, using references made by Cerri, Reis e Giordano (2011) and the risk of the analised dams were defined. A study about this type of structure is highly necessary to avoid big damages. An analysis of the geological and geotechnical conditionants that can cause break of dams guides the project in a way to avoid adverse consequences, especially when integrated with locacional conditions observed in the place of the dam’s building
Resumo:
Interventions in nature made by man are very common since the beginnings of human history, especially in the case regarding the storage of water. The construction of dams have been and still are fundamental in maintaining human life due to the vital importance that water plays. The size of these structures vary according to need, such as water catchment, fish-farming or electricity generation. Embankment dams are the most common type of these structures. Can be defined as dams natural material obtained from loan chambers located near the dam site. This type of barrier may be divided into earth dams and rockfill dams. The study area covers an earth dam located in Cordeirópolis (SP) and is essentially composed of diabases altered soil of the Serra Geral Formation of the Paraná Basin. With the aid of geophysics, more specifically of the Electrical Resistivity method, the aim is to check any water infiltration zones in the dam's body. Given the risks associated with water seepage in earth dams, that may generate breakdown structures, erosion, and consequently accidents and / or harmful factors in the nearby areas. One of the main structural problems married by water infiltration is the possible generation of pipes that could jeopardize the dam structure. This work aims to contribute towards the evaluation of the effectiveness of using an indirect technique of research and monitoring in aid to direct research techniques such as piezometers and drive stakes. The results are presented in the form of 2D and 3D geophysical models, the analysis shows a low resistivity zone with typical values of the presence of humidity originating upstream of the dam and downstream bottleneck trend, that are the basis for interpretation by percolation or not water in the dam