998 resultados para Early prophase oocyte
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
The objective was to characterize female germ cell renewal during the annual reproductive cycle in two species of ostariophysian fish with distinct reproductive strategies: a siluriform, Pimelodus maculatus, in which oocyte development is group synchronous and the annual reproductive period is short; and a characiform, Serrasalmus maculatus, with asynchronous oocyte development and a prolonged reproductive period. These reproductive strategies result in fish determinate and indeterminate fecundity, respectively. Annual reproductive phases were determined by biometric and histologic analysis of gonads and interpreted according to new proposals for phase classification and stages of oocyte development (with special attention to germinal epithelium activity). Histologically, there were two types of oogonia in the germinal epithelium: single oogonia and those in mitotic proliferation. Oogonial proliferation and their entry into meiosis resulted in formation of cell nests (clusters of cells in the ovarian lamellae). Morphometric analysis was used to estimate germ cell renewal. Based on numbers of single oogonia in the lamellar epithelium, and nests with proliferating oogonia or early prophase oocytes throughout the annual reproductive cycle, oogonial proliferation and entrance into meiosis were more intense during the regenerating phase and developing phase, but decreased sharply (P < 0.05) during the spawning-capable phase. Oogonial proliferation gradually recovered during the regressing phase. We concluded that, independent of species or features of the reproductive cycle, germ cell renewal occurred during the regenerating phase, ensuring availability of eggs for the spawning event. © 2013 Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The “cut” mutants of Schizosaccharomyces pombe are defective in spindle formation and/or chromosome segregation, but they proceed through the cell cycle, resulting in lethality. Analysis of temperature-sensitive alleles of cut11+ suggests that this gene is required for the formation of a functional bipolar spindle. Defective spindle structure was revealed with fluorescent probes for tubulin and DNA. Three-dimensional reconstruction of mutant spindles by serial sectioning and electron microscopy showed that the spindle pole bodies (SPBs) either failed to complete normal duplication or were free floating in the nucleoplasm. Localization of Cut11p tagged with the green fluorescent protein showed punctate nuclear envelope staining throughout the cell cycle and SPBs staining from early prophase to mid anaphase. This SPB localization correlates with the time in the cell cycle when SPBs are inserted into the nuclear envelope. Immunoelectron microscopy confirmed the localization of Cut11p to mitotic SPBs and nuclear pore complexes. Cloning and sequencing showed that cut11+ encodes a novel protein with seven putative membrane-spanning domains and homology to the Saccharomyces cerevisiae gene NDC1. These data suggest that Cut11p associates with nuclear pore complexes and mitotic SPBs as an anchor in the nuclear envelope; this role is essential for mitosis.
Resumo:
The mosquito (Aedes aegypti) vitellogenin receptor (AaVgR) is a large membrane-bound protein (214 kDa when linearized) that mediates internalization of vitellogenin, the major yolk-protein precursor, by oocytes during egg development. We have cloned and sequenced two cDNA fragments encompassing the entire coding region of AaVgR mRNA, to our knowledge the first insect VgR sequence to be reported. The 7.3-kb AaVgR mRNA is present only in female germ-line cells and is abundant in previtellogenic oocytes, suggesting that the AaVgR gene is expressed early in oocyte differentiation. The deduced amino acid sequence predicts a 202.7-kDa protein before posttranslational processing. The AaVgR is a member of the low density lipoprotein receptor superfamily, sharing significant homology with the chicken (Gallus gallus) VgR and particularly the Drosophila melanogaster yolk protein receptor, in spite of a very different ligand for the latter. Distance-based phylogenetic analyses suggest that the insect VgR/yolk protein receptor lineage and the vertebrate VgR/low density lipoprotein receptor lineage diverged before the bifurcation of nematode and deuterostome lines.
Resumo:
Eg5, a member of the bimC subfamily of kinesin-like microtubule motor proteins, localizes to spindle microtubules in mitosis but not to interphase microtubules. We investigated the molecular basis for spindle localization by transient transfection of Xenopus A6 cells with myc-tagged derivatives of Eg5. Expressed at constitutively high levels from a cytomegalovirus promoter, mycEg5 protein is cytoplasmic throughout interphase, begins to bind microtubules in early prophase, and remains localized to spindle and/or midbody microtubules through mitosis to the end of telophase. Both N- and C-terminal regions of Eg5 are required for this cell-cycle-regulated targeting. Eg5 also contains within its C-terminal domain a sequence conserved among bimC subfamily proteins that includes a potential p34cdc2 phosphorylation site. We show that mutation of a single threonine (T937) within this site to nonphosphorylatable alanine abolishes localization of the mutant protein to the spindle, whereas mutation of T937 to serine preserves spindle localization. We hypothesize that phosphorylation of Eg5 may regulate its localization to the spindle in the cell cycle.
Resumo:
Oocytes are arrested for long periods of time in the prophase of the first meiotic division (prophase I). As chromosome condensation poses significant constraints to gene expression, the mechanisms regulating transcriptional activity in the prophase I-arrested oocyte are still not entirely understood. We hypothesized that gene expression during the prophase I arrest is primarily epigenetically regulated. Here we comprehensively define the Drosophila female germ line epigenome throughout oogenesis and show that the oocyte has a unique, dynamic and remarkably diversified epigenome characterized by the presence of both euchromatic and heterochromatic marks. We observed that the perturbation of the oocyte's epigenome in early oogenesis, through depletion of the dKDM5 histone demethylase, results in the temporal deregulation of meiotic transcription and affects female fertility. Taken together, our results indicate that the early programming of the oocyte epigenome primes meiotic chromatin for subsequent functions in late prophase I.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The presence of heparin and a mixture of penicillamine, hypotaurine, and epinephrine (PHE) solution in the in vitro fertilization (IVF) media seem to be a prerequisite when bovine spermatozoa are capacitated in vitro, in order to stimulate sperm motility and acrosome reaction. The present study was designed to determine the effect of the addition of heparin and PHE during IVF on the quality and penetrability of spermatozoa into bovine oocytes and on subsequent embryo development. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes and mitochondrial function, was diminished (P < 0.05) in the presence of heparin and PHE. Oocyte penetration and normal pronuclear formation rates, as well as the percentage of zygotes presenting more than two pronuclei, was higher (P < 0.05) in the presence of heparin and PHE. No differences were observed in cleavage rates between treatment and control (P > 0.05). However, the developmental rate to the blastocyst stage was increased in the presence of heparin and PHE (P > 0.05). The quality of embryos that reached the blastocyst stage was evaluated by counting the inner cell mass (ICM) and trophectoderm (TE) cell numbers and total number of cells; the percentage of ICM and TE cells was unaffected (P > 0.05) in the presence of heparin and PHE (P < 0.05). In conclusion, this study demonstrated that while the supplementation of IVF media with heparin and PHE solution impairs spermatozoa quality, it plays an important role in sperm capacitation, improving pronuclear formation, and early embryonic development. © 2013 The Society for In Vitro Biology.
Resumo:
Oocyte maturation is a complex process involving nuclear and cytoplasmic maturation. The nuclear maturation is a chromosomal segregation and the cytoplasmic maturation involves the reorganization of the cytoplasmic organelles, mRNA transcription and storage of proteins to be used during fertilization and early embryo development. The mechanism of oocyte maturation in vivo and in vitro still are not totally understood. However it is generally accepted that the second messenger cyclic adenosine monophosphate (cAMP) plays a critical role in the maintenance of meiotic blockage of mammalian oocytes. A relative increase in the level of cAMP within the oocyte is essential for maintaining meiosis block, while a decrease in cAMP oocyte concentration allows the resumption of meiosis. The oocyte cAMP concentration is regulated by a balance of two types of enzymes: adenylate cyclase (AC) and phosphodiesterases (PDEs), which are responsible for the synthesis and degradation of cAMP, respectively. After being synthesized by AC in cumulus cells, cAMP are transferred to the oocyte through gap junctions. Thus, specific subtypes PDEs are able to inhibit or attenuate the spontaneous meiotic maturation of oocytes with PDE4 primarily involved in the metabolism of cAMP in granulosa cells and PDE3 in the oocyte. Although the immature oocytes can resume meiosis in vitro, after being removed from antral follicles, cytoplasmic maturation seems to occur asynchronously with nuclear maturation. Therefore, knowledge of the oocyte maturation process is fundamental for the development of methodologies to increase the success of in vitro embryo production and to develop treatments for various forms of infertility. This review will present current knowledge about the maintenance of the oocyte in prophase arrest, and the resumption of meiosis during oocyte maturation, focusing mainly on the changes that take place in the oocyte.
Resumo:
The presence of heparin and a mixture of penicillamine, hypotaurine, and epinephrine (PHE) solution in the in vitro fertilization (IVF) media seem to be a prerequisite when bovine spermatozoa are capacitated in vitro, in order to stimulate sperm motility and acrosome reaction. The present study was designed to determine the effect of the addition of heparin and PHE during IVF on the quality and penetrability of spermatozoa into bovine oocytes and on subsequent embryo development. Sperm quality, evaluated by the integrity of plasma and acrosomal membranes and mitochondrial function, was diminished (P<0.05) in the presence of heparin and PHE. Oocyte penetration and normal pronuclear formation rates, as well as the percentage of zygotes presenting more than two pronuclei, was higher (P<0.05) in the presence of heparin and PHE. No differences were observed in cleavage rates between treatment and control (P>0.05). However, the developmental rate to the blastocyst stage was increased in the presence of heparin and PHE (P>0.05). The quality of embryos that reached the blastocyst stage was evaluated by counting the inner cell mass (ICM) and trophectoderm (TE) cell numbers and total number of cells; the percentage of ICM and TE cells was unaffected (P>0.05) in the presence of heparin and PHE (P<0.05). In conclusion, this study demonstrated that while the supplementation of IVF media with heparin and PHE solution impairs spermatozoa quality, it plays an important role in sperm capacitation, improving pronuclear formation, and early embryonic development
Resumo:
In mice, exposure to isoflavones (ISO), abundant in soy infant formula, during the first 5 d of life alters structural and functional development of reproductive organs. Effects of longer exposures are unknown. The study objective was to evaluate whether exposure to a combination of daidzein and genistein in the first 10 compared to 5 d of life results in greater adverse effects on ovarian and uterine structure in adult mice. Thirteen litters of 8–12 pups were cross-fostered and randomized to corn oil or ISO (2 mg daidzein + 5 mg genistein/kg body weight/d) for the first 5 or 10 d of life. The 10-d protocol mimicked the period when infants are fed soy protein formula (SPF) but avoids the time when suckling pups can consume the mother’s diet. Body and organ weights and histology of ovaries and uteri were analyzed. There were no differences in the ovary or uterus weight, number of ovarian follicles, number of multiple oocyte follicles, or percent of ovarian cysts with 5 or 10 d of ISO intervention compared to respective controls. The 10-d ISO group had higher body weights from 6 d to 4 mo. of age and a higher percent of hyperplasia in the oviduct than the respective control. Lower numbers of ovarian corpus lutea and a higher incidence of abnormal changes were reported in the uteri of both ISO groups compared to their respective controls. Five- and 10-d exposure to ISO had similar long-lasting adverse effects on the structures of ovaries and uterus in adult mice. Only the 10-d ISO exposure resulted in greater body weight gain at adulthood.
Resumo:
Oocyte developmental competence depends on maternal stores that support development throughout a transcriptionally silent period during early embryogenesis. Previous attempts to investigate transcripts associated with oocyte competence have relied on prospective models, which are mostly based on morphological. criteria. Using a retrospective model, we quantitatively compared mRNA among oocytes with different embryo development competence. A cytoplasm biopsy was removed from in vitro matured oocytes to perform comparative analysis of amounts of global polyadenylated (polyA) mRNA and housekeeping gene transcripts. After parthenogenetic activation of biopsied oocytes, presumptive zygotes were cultured individually in vitro and oocytes were classified according to embryo development: (i) blocked before the 8-cell stage; (ii) blocked between the 8-cell and morulae stages; or (iii) developed to the blastocyst stage. Sham-manipulated controls confirmed that biopsies did not alter development outcome. Total polyA mRNA amounts correlate with oocyte diameter but not with the ability to develop to the 8-cell and blastocyst stages. The last was also confirmed by relative quantification of GAPDH, H2A and Hprt1 transcripts. In conclusion, we describe a novel retrospective model to identify putative markers of development competence in single oocytes and demonstrate that global mRNA amounts at the metaphase II stage do not correlate with embryo development in vitro.
Resumo:
The extensive replication of mitochondria during oogenesis and the wide variability in mitochondrial DNA ( mtDNA) copy numbers present in fully grown oocytes indicate that mtDNA amount may play an important role during early embryogenesis. Using bovine oocytes derived from follicles of different sizes to study the influence of mtDNA content on development, we showed that oocytes obtained from small follicles, known to be less competent in developing into blastocysts, contain less mtDNA than those originating from larger follicles. However, because of the high variability in copy number, a more accurate approach was examined in which parthenogenetic one-cell embryos were biopsied to measure their mtDNA content and then cultured to assess development capacity. Contrasting with previous findings, mtDNA copy number in biopsies was not different between competent and incompetent embryos, indicating that mtDNA content is not related to early developmental competence. To further examine the importance of mtDNA on development, one-cell embryos were partially depleted of their mtDNA (64% +/- 4.1% less) by centrifugation followed by the removal of the mitochondrial-enriched cytoplasmic fraction. Surprisingly, depleted embryos developed normally into blastocysts, which contained mtDNA copy numbers similar to nonmanipulated controls. Development in depleted embryos was accompanied by an increase in the expression of genes (TFAM and NRF1) controlling mtDNA replication and transcription, indicating an intrinsic ability to restore the content of mtDNA at the blastocyst stage. Therefore, we concluded that competent bovine embryos are able to regulate their mtDNA content at the blastocyst stage regardless of the copy numbers accumulated during oogenesis.
Resumo:
Efficient artificial activation is indispensable for the success of cloning programs. Strontium has been shown to effectively activate mouse oocytes for nuclear transfer procedures, however, there is limited information on its use for bovine oocytes. The present study had as objectives: (1) to assess the ability of strontium to induce activation and parthenogenetic development in bovine oocytes of different maturational ages in comparison with ethanol; and (2) to verify whether the combination of both treatments improves activation and parthenogenetic development rates. Bovine oocytes were in vitro matured for 24, 26, 28, and 30 h, and treated with ethanol (E, 7% for 5 min) or strontium chloride (S, 10 mM SrCl2 for 5 h) alone or in combination: ethanol + strontium (ES) and strontium + ethanol (SE). Activated oocytes were cultured in vitro in synthetic oviductal fluid (SOF) medium and assessed for pronuclear formation (15-16 h), cleavage (46-48 h) and development to the blastocyst stage (M). Treatment with ethanol and strontium promoted similar results regarding pronuclear formation (E, 20-66.7%; S, 26.7-53.3%; P > 0.05) and cleavage (E, 12.8-40.6%; S, 16.1-41.9%; P > 0.05), regardless of oocyte age. The actions of both strontium and ethanol were influenced by oocyte age: ethanol induced greater activation rates after 28 and 30 h of maturation (48.4 and 66.7% versus 20.0 and 23.3% for 24 and 26 It, respectively; P < 0.05) and strontium after 30 It (53.3%) was superior to 24 and 26h (26.7% for both). Blastocyst development rates were minimal in all treatments (0.0-6.3%; P > 0.05), however, when the mean (+/-S.D.) cell number in blastocysts at the same maturational period was compared, strontium treatment was superior to ethanol for activation rates (82 +/- 5.7 and 89.5 +/- 7.8 versus 54 and 61, at 28 and 30 h, respectively). Improved results were obtained by combined treatments. The combination of ethanol and strontium resulted in similar pronuclear formation (ES, 36.7-83.9%; SE, 53.1-90.3%) and cleavage rates (ES, 31.3-81.3%; SE, 65.6-80.7%). Regarding embryo development, there was no difference (P > 0.05) between treatments, and blastocysts were only obtained in treatment SE at 24 and 26 h (6.5% for both). It is concluded that, SrCl2 induces activation and parthenogenetic development in bovine oocytes. (C) 2003 Elsevier B.V. All rights reserved.