1000 resultados para EXCITON-STATES
Resumo:
We present an experimental demonstration of strong optical coupling between CdSequantum dots of different sizes which is induced by a surface plasmon propagating on a planar silver thin film. Attenuated total reflection measurements demonstrate the hybridization of exciton states, characterized by the observation of two avoided crossings in the energy dispersion measured for the interacting system.
Resumo:
We consider the electron-hole pair confined in a simplified infinite potential. The low-lying excition states in a ZnO cylindrical nanodisk are calculated based on effective-mass theory. To further understand the optical properties, we calculate the linear optical susceptibilities chi(w) and the radiative recombination lifetime tau of excitons in a ZnO nanodisk. The exciton radiative lifetime in a cylindrical nanodisk is of the order of tens of picoseconds, which is small compared with the lifetime of bulk ZnO material. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3006134]
Resumo:
The electronic structure and exciton states of cylindrical ZnO nanorods with radius from 2 to 6 nm are investigated based on the framework of the effective-mass theory. Using the adiabatic approximation, the exciton binding energies taking account of the dielectric mismatch are solved exactly when the total angular momentum of the exciton states L = 0 and L = +/- 1. We find that the exciton binding energies can be enhanced greatly by the dielectric mismatch and the calculated results are almost consistent with the experimental data. Meanwhile, we obtain the optical transition rule when the small spin-obit splitting Delta(so) of ZnO is neglected. Furthermore, the radiative lifetime and linear optical susceptibilities chi(w) of the exciton states are calculated theoretically. The theoretical results are consistent with the experimental data very well. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3125456]
Resumo:
We have studied the exciton states of vertically stacked self-assembled quantum disks within the effective mass approximation. The ground energies of a heavy-hole and a light-hole excitons as functions of the vertical disk separation are presented and discussed. The transition energy of a heavy-hole ground-state exciton is calculated and compared with the experimental data. The binding energies are discussed in terms of the probability of ground wave function. The ground energies of a heavy-hole and a light-hole excitons as functions of the applied axial magnetic field are calculated and the effect of disk size (radius of disks) on exciton energies is discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We have studied the hole levels and exciton states in CdS nanocrystals by using the hole effective-mass Hamiltonian for wurtzite structure. It is found that the optically passive P-x state will become the ground hole state for small CdS quantum dots of radius less than 69 Angstrom. It suggests that the "dark exciton" would be more easily observed in the CdS quantum dots than that in CdSe quantum dots. The size dependence of the resonant Stokes shift is predicted for CdS quantum dots. Including the Coulomb interaction, exciton energies as functions of the dot radius are calculated and compared with experimental data.
Resumo:
By using the hole effective-mass Hamiltonian for semiconductors with the wurtzite structure, we have studied the exciton states and optical spectra in CdSe nanocrystallite quantum dots. The intrinsic asymmetry of the hexagonal lattice structure and the effect of spin-orbital coupling (SOC) on the hole states are investigated. It is found that the strong SOC limit is a good approximation for hole states. The selection rules and oscillator strengths for optical transitions between the conduction- and valence-band states are obtained. The Coulomb interaction of exciton states is also taken into account. In order to identify the exciton states, we use the approximation of eliminating the coupling of Gamma(6)(X, Y) with Gamma(1)(Z) states. The results are found to account for most of the important features of the experimental photoluminescence excitation spectra of Norris ct nl. However, if the interaction between Gamma(6)(X, Y) and Gamma(1)(Z) states is ignored, the optically passive P-x state cannot become the ground hole state for small CdSe quantum dots of radius less than 30 Angstrom. It is suggested that the intrinsic asymmetry of the hexagonal lattice structure and the coupling of Gamma(6)(X,Y) with Gamma(1)(Z) states are important for understanding the "dark exciton" effect.
Resumo:
Quantum-confined Stark effects are investigated theoretically in GaAs/AlxGa1-xAs quantum wires formed in V-grooved structures. The electronic structures of the V-shaped quantum wires are calculated within the effective mass envelope function theory in the presence of electric field. The binding energies of excitons are also studied by two-dimensional Fourier transformation and variational method. The blue Stark shifts are found when the electric field is applied in the growth direction. A possible mechanism in which the blueshifts of photoluminescence peaks are attributed to two factors, one factor comes from the asymmetric structure of quantum wire along the electric field and another factor arises from the electric-field-induced change of the Coulomb interaction. The numerical results are compared with the recent experiment measurement.
Resumo:
The exciton states in isolated and semi-isolated quantum wires are studied. It is found that the image charges have a large effect on the effective Coulomb potential in wires. For the isolated wire the effective potential approaches the Coulomb potential in vacuum at large z distance. For the semi-isolated wire the effective potential is intermediate between the Coulomb potential in vacuum and the screened Coulomb potential at large distance. The exciton binding energy in the isolated wire is about ten times larger than that in the quantum well, and that in the semi-isolated wire is also intermediate between those in the isolated wire and in the quantum well. When the lateral width increases the binding energy decreases further, and approaches that in the quantum well. The real valence-band structure is taken into account, the exciton wave functions of the ground state in the zero-order approximation are given, and the reduced mass is calculated. The effect of the coupling between the ground and excited states are considered by the degenerate perturbation method, and it is found the coupling effect is small compared to the binding energy.
Resumo:
We show, for sufficiently high temperatures and sufficiently weak majority-carrier binding energies, that the dominant radiative transition at an isoelectronic acceptor (donor) in p-type (n-type) material consists of the recombination of singly trapped minority carriers (bound by central-cell forces) with free majority carriers attracted by a Coulomb interaction. There are two reasons why the radiative recombination rate of the free-to-bound process is greater than the bound exciton process, which dominates at lower temperatures: (i) The population of free majority-carrier states greatly exceeds that of exciton states at higher temperatures, and (ii) the oscillator strength of the free-to-bound transition is greatly enhanced by the Coulomb attraction between the free carrier and the charged isoelectronic impurity. This enhancement is important for isoelectronic centers and is easily calculable from existing exciton models. We show that the free carrier attracted by a Coulomb interaction can be viewed as a continuum excited state of the bound exciton. When we apply the results of our calculations to the GaP(Zn, O) system, we find that the major part of the room-temperature luminescence from nearest-neighbor isoelectronic Zn-O complexes results from free-to-bound recombination and not exciton recombination as has been thought previously. Recent experiments on impulse excitation of luminescence in GaP(Zn, O) are reevaluated in the light of our calculations and are shown to be consistent with a strong free-to-bound transition. For deep isoelectronic centers with weakly bound majority carriers, we predict an overwhelming dominance of the free-to-bound process at 300°K.
Resumo:
We investigate theoretically the spin splitting of the exciton states in semiconductor coupled quantum dots (CQDs) containing a single magnetic ion. We find that the spin splitting can be switched on/off in the CQDs via the sp-d exchange interaction using the electric field. An interesting bright-to-dark exciton transition can be found and it significantly affects the photoluminescence spectrum. This phenomenon is induced by the transition of the ground exciton state, arising from the hole mixing effect, between the bonding and antibonding states. (C) 2008 American Institute of Physics.
Resumo:
On the basis of the density functional theory (DFT) within local density approximations (LDA) approach, we calculate the band gaps for different size SnO2 quantum wire (QWs) and quantum dots (QDs). A model is proposed to passivate the surface atoms of SnO2 QWs and QDs. We find that the band gap increases between QWs and bulk evolve as Delta E-g(wire) = 1.74/d(1.20) as the effective diameter d decreases, while being Delta E-g(dot) = 2.84/d(1.26) for the QDs. Though the similar to d(1.2) scale is significantly different from similar to d(2) of the effective mass result, the ratio of band gap increases between SnO2 QWs and QDs is 0.609, very close to the effective mass prediction. We also confirm, although the LDS calculations underestimate the band gap, that they give the trend of band gap shift as much as that obtained by the hybrid functional (PBE0) with a rational mixing of 25% Fock exchange and 75% of the conventional Perdew-Burke-Ernzerhof (PBE) exchange functional for the SnO2 QWs and QDs. The relative deviation of the LDA calculated band gap difference Lambda E-g compared with the corresponding PBE0 results is only within 5%. Additionally, it is found the states of valence band maximum (VBM) and conduction band minimum (CBM) of SnO2 QWs or QDs have a mostly p- and s-like envelope function symmetry, respectively, from both LDA and PBE0 calculations.
Resumo:
We have studied the exciton states in vertically stacked self-assembled quantum disks within the effective mass approximation. The energy spectrum of the electron and hole is calculated using the transfer matrix formalism in the adiabatic approximation. The Coulomb interaction between the electron and the hole is treated accurately by the direct diagonalization of the Hamiltonian matrix. The effect of the vertical alignment of the disks on the ground energy of heavy- and light-hole exciton is presented and discussed. The binding energy is discussed in terms of the probability of the ground wave function. The ground energy of heavy- and light-hole excitons as a function of the magnetic field is presented and the effect of the disk size (the radius of disks) on the exciton energy is discussed.
Resumo:
State-filling effects of the exciton in a In0.65Al0.35As/Al0.4Ga0.6As quantum dot array are observed by quantum dot array photolumineseence at a sample temperature of 77 K. The exciton emission at low excitation density is dominated by the radiative recombination of the states in the s shell and at high excitation density the emission mainly results from the radiative recombination of the exciton state in the p shell. The spectral interval between the states in the s and p shells is about 30-40 mcV. The time resolved photoluminescence shows that the decay time of exciton states in the p shell is longer than that of exciton states in the s shell, and the emission intensity of the exciton state in the p shell is superlinearly dependent on excitation density. Furthermore, electron-hole liquid in the quantum dot array is observed at 77 K, which is a much higher temperature than that in bulk. The emission peak of the. recombination, of electron-hole liquid has an about 200 meV redshift from the exciton fluorescence. Two excitation density-dependent emission peaks at 1.56 and 1.59 eV are observed, respectively, which result from quantum confinement effects in QDs. The emission intensity of electron-hole liquid is directly proportional to the cubic of excitation densities and its decay time decreases significantly at the high excitation density.
Resumo:
The recombination kinetics of Te isoelectronic centers in ZnS1-xTex (0.0065 less than or equal to x less than or equal to 0.85) alloys is studied by time-resolved photoluminescence (TRPL) at low temperature. The measured radiative recombination lifetimes of different Te bound exciton states are quite different, varying from a few nanoseconds to tens of nanosecond. As the bound exciton state evolves from a single Te impurity (Te-1) to larger Te clusters (Te-n, n=2,3,4), the recombination lifetime increases. It reaches maximum (similar to40 ns) for the Te-4 bound states at x=0.155. The increase of the exciton lifetime is attributed to the increasing exciton localization effect caused by larger localization potential. In the large Te composition range (x > 0.155), the exciton recombination lifetime decreases monotonically with Te composition. It is mainly due to the hybridization between the Te localized states and the host valence band states. The composition dependences of the exciton binding energy and the photoluminescence (PL) line width show the similar tendency that further support the localization picture obtained from the TRPL measurement. (C) 2005 American Institute of Physics.