925 resultados para EVOLUTIONARY CONFLICTS
Resumo:
Evolutionary conflicts among social hymenopteran nestmates are theoretically likely to arise over the production of males and the sex ratio. Analysis of these conflicts has become an important focus of research into the role of kin selection in shaping social traits of hymenopteran colonies. We employ microsatellite analysis of nestmates of one social hymenopteran, the primitively eusocial and monogynous bumblebee Bombus hypnorum, to evaluate these conflicts. In our 14 study colonies, B. hypnorum queens mated between one and six times (arithmetic mean 2.5). One male generally predominated, fathering most of the offspring, thus the effective number of matings was substantially lower (1–3.13; harmonic mean 1.26). In addition, microsatellite analysis allowed the detection of alien workers, those who could not have been the offspring of the queen, in approximately half the colonies. Alien workers within the same colony were probably sisters. Polyandry and alien workers resulted in high variation among colonies in their sociogenetic organization. Genetic data were consistent with the view that all males (n = 233 examined) were produced by a colony’s queen. Male parentage was therefore independent of the sociogenetic organization of the colony, suggesting that the queen, and not the workers, was in control of the laying of male-destined eggs. The population-wide sex ratio (fresh weight investment ratio) was weakly female biased. No evidence for colony-level adaptive sex ratio biasing could be detected.
Resumo:
Recent studies on the obligate interaction between fig trees and their pollinating agaonid wasps have focused on population aspects and wasp-seed exploitation at the level of the inflorescence. Detailed studies on larval and gall development are required to more fully understand how resources are exploited and adaptations fine-tuned by each partner in nursery pollination mutualisms. We studied the larval development of the active pollinating fig wasp, Pegoscapus sp., and the galling process of individual flowers within the figs of its monoecious host, Ficus citrifolia, in Brazil. The pollinator development is strongly dependent on flower pollination. Figs entered by pollen-free wasps were in general more likely to abort. Retained, unpollinated figs had both higher larval mortality and a lower number of wasps. Pegoscapus sp. larvae are adapted to plant development, with two contrasting larval feeding strategies proceeding alongside gall development. The first two larval stages behave as ovary parasites. Later larval stages feed on hypertrophied endosperm. This indicates that a successful galling process relies on endosperm, and also reveals why pollination would be a prerequisite for the production of high-quality galls for this Pegoscapus species.
Resumo:
This approach to sustainable design explores the possibility of creating an architectural design process which can iteratively produce optimised and sustainable design solutions. Driven by an evolution process based on genetic algorithms, the system allows the designer to “design the building design generator” rather than to “designs the building”. The design concept is abstracted into a digital design schema, which allows transfer of the human creative vision into the rational language of a computer. The schema is then elaborated into the use of genetic algorithms to evolve innovative, performative and sustainable design solutions. The prioritisation of the project’s constraints and the subsequent design solutions synthesised during design generation are expected to resolve most of the major conflicts in the evaluation and optimisation phases. Mosques are used as the example building typology to ground the research activity. The spatial organisations of various mosque typologies are graphically represented by adjacency constraints between spaces. Each configuration is represented by a planar graph which is then translated into a non-orthogonal dual graph and fed into the genetic algorithm system with fixed constraints and expected performance criteria set to govern evolution. The resultant Hierarchical Evolutionary Algorithmic Design System is developed by linking the evaluation process with environmental assessment tools to rank the candidate designs. The proposed system generates the concept, the seed, and the schema, and has environmental performance as one of the main criteria in driving optimisation.
Resumo:
This thesis develops a detailed conceptual design method and a system software architecture defined with a parametric and generative evolutionary design system to support an integrated interdisciplinary building design approach. The research recognises the need to shift design efforts toward the earliest phases of the design process to support crucial design decisions that have a substantial cost implication on the overall project budget. The overall motivation of the research is to improve the quality of designs produced at the author's employer, the General Directorate of Major Works (GDMW) of the Saudi Arabian Armed Forces. GDMW produces many buildings that have standard requirements, across a wide range of environmental and social circumstances. A rapid means of customising designs for local circumstances would have significant benefits. The research considers the use of evolutionary genetic algorithms in the design process and the ability to generate and assess a wider range of potential design solutions than a human could manage. This wider ranging assessment, during the early stages of the design process, means that the generated solutions will be more appropriate for the defined design problem. The research work proposes a design method and system that promotes a collaborative relationship between human creativity and the computer capability. The tectonic design approach is adopted as a process oriented design that values the process of design as much as the product. The aim is to connect the evolutionary systems to performance assessment applications, which are used as prioritised fitness functions. This will produce design solutions that respond to their environmental and function requirements. This integrated, interdisciplinary approach to design will produce solutions through a design process that considers and balances the requirements of all aspects of the design. Since this thesis covers a wide area of research material, 'methodological pluralism' approach was used, incorporating both prescriptive and descriptive research methods. Multiple models of research were combined and the overall research was undertaken following three main stages, conceptualisation, developmental and evaluation. The first two stages lay the foundations for the specification of the proposed system where key aspects of the system that have not previously been proven in the literature, were implemented to test the feasibility of the system. As a result of combining the existing knowledge in the area with the newlyverified key aspects of the proposed system, this research can form the base for a future software development project. The evaluation stage, which includes building the prototype system to test and evaluate the system performance based on the criteria defined in the earlier stage, is not within the scope this thesis. The research results in a conceptual design method and a proposed system software architecture. The proposed system is called the 'Hierarchical Evolutionary Algorithmic Design (HEAD) System'. The HEAD system has shown to be feasible through the initial illustrative paper-based simulation. The HEAD system consists of the two main components - 'Design Schema' and the 'Synthesis Algorithms'. The HEAD system reflects the major research contribution in the way it is conceptualised, while secondary contributions are achieved within the system components. The design schema provides constraints on the generation of designs, thus enabling the designer to create a wide range of potential designs that can then be analysed for desirable characteristics. The design schema supports the digital representation of the human creativity of designers into a dynamic design framework that can be encoded and then executed through the use of evolutionary genetic algorithms. The design schema incorporates 2D and 3D geometry and graph theory for space layout planning and building formation using the Lowest Common Design Denominator (LCDD) of a parameterised 2D module and a 3D structural module. This provides a bridge between the standard adjacency requirements and the evolutionary system. The use of graphs as an input to the evolutionary algorithm supports the introduction of constraints in a way that is not supported by standard evolutionary techniques. The process of design synthesis is guided as a higher level description of the building that supports geometrical constraints. The Synthesis Algorithms component analyses designs at four levels, 'Room', 'Layout', 'Building' and 'Optimisation'. At each level multiple fitness functions are embedded into the genetic algorithm to target the specific requirements of the relevant decomposed part of the design problem. Decomposing the design problem to allow for the design requirements of each level to be dealt with separately and then reassembling them in a bottom up approach reduces the generation of non-viable solutions through constraining the options available at the next higher level. The iterative approach, in exploring the range of design solutions through modification of the design schema as the understanding of the design problem improves, assists in identifying conflicts in the design requirements. Additionally, the hierarchical set-up allows the embedding of multiple fitness functions into the genetic algorithm, each relevant to a specific level. This supports an integrated multi-level, multi-disciplinary approach. The HEAD system promotes a collaborative relationship between human creativity and the computer capability. The design schema component, as the input to the procedural algorithms, enables the encoding of certain aspects of the designer's subjective creativity. By focusing on finding solutions for the relevant sub-problems at the appropriate levels of detail, the hierarchical nature of the system assist in the design decision-making process.
Resumo:
What the real trade-off is among fig-supported wasps and the viable seeds of figs is heatedly debated in the studies of fig/fig wasp mutualism. In the present study, we collected wasp offspring (galls) and the viable seeds of premature fruits, and determined the foundress number in receptive fruits and all the types of wasps supported by Ficus racemosa L. during both the rainy and dry seasons in Xishuangbanna, China. The data show that the galls were positively correlated with viable seeds (n=32;r=0.74; P < 0.001) when the proportion of vacant female flowers (PVFF) was high, in April (68.0%), and were negatively correlated with viable seeds (n=48;r=-0.59; P < 0.05) when PVFF were limited (PVFF 42.6%) during a colder month (January). The mean foundress number per fruit during the colder months is significantly lower than during the warmer months (F-5,F-603 = 27.9; P < 0.001) and pollinator wasps can live longer during the colder months, During the colder months, the proportions of non-pollinators and wasp offspring are higher than those found during other months, whereas the proportion of viable seeds is not different compared with that of other months. Non-pollinator wasps tend to oviposit the female flowers that have been oviposited by pollinator wasps. The non-pollinators only negatively affect pollinator wasps and there is no obvious negative effect of non-pollinator wasps on viable seeds, so ovipositing by non-pollinator wasps will not result in the extinction of the figs during the process of evolution. The results of the present study indicate that figs can allow less foundresses to be in fruit cavities when PVFF are limited, which provides supporting evidence for the previous assumption that the plants have developed a mechanism to maintain a stable system because of the conflicts between the parties involved.
Resumo:
The evolutionary process of converting low-lying paddy fields into fish farms and its impact on agrarian communities in some selected areas of Mymensingh district were studied. This study was conducted through participatory rural appraisal (PRA) covering 12 villages from each of selected upazillas viz. Fulpur and Haluaghat of Mymensing [sic] district. A total of 12 PRA sessions were conducted where 90 farmers participated during 29 July to 26 August 2004. It is seen that the use of low-lying paddy fields was mostly confined to Broadcast Aman (B. Aman) rice production until 1960s. With the introduction of modern rice farming technology, the farmers started to produce Boro rice in Rabi season and B. Aman rice in Kharif season. With the passage of time, aquaculture technologies have been evolved and the farmers realized that fish farming is more profitable than rice cultivation, and then they started to utilize their paddy fields for alternate rice-fish farming and rice-cum-fish farming. Now a days, aquaculture based crop production system is in practice in more than 25% of the low-lying paddy fields. Conversion of rice fields in to fish ponds has brought up a change in the livelihood patterns of the rural farmers. The areas where the farmers involved themselves in the new production systems were fingerling collection, transportation and marketing of fry and fingerlings. During 1960s to 1970s, a few people used to culture fish in the permanent ponds for their own consumption, the species produced were rohu, catla, mrigal, ghainna, long whiskered catfish, freshwater shark (boal), snake head (shol) etc. Small fishes like climbing perch, stinging catfish, walking catfish, barb, minnows etc. were available in the rice fields during monsoon season. In 1980s to mid 1990s, some rice fields were converted into fish ponds and the people started to produce fish for commercial purposes. When rice-fish farming became profitable, a large number of people started converting their rice fields in to rice-fish culture ponds. Culture of some exotic fishes like silver carp, tilapia, grass carp, silver barb etc. also started in the paddy fields. Higher income from fish farming contributed positively in improving the housing, sanitation and education system in the study areas. It is seen that the medium and medium high lands were only used for alternate rice fish farming. The net income was high in any fish based cropping system that motivated the farmers to introduce fish based cropping system in the low-lying inland areas. As a result, the regional as well as communal income disparities occurred. However, the extraction of ground water became common during the dry period as the water was used for both rice and fish farming. Mass conversion of paddy fields into rice-fish culture ponds caused water logging in the study areas. In most cases, the participated farmers mentioned that they could be easily benefited by producing fish with T. Aman or only fish during the monsoon season. They agreed that this was an impressive technology to them and they could generate employment opportunities throughout the year. Finally, the social, economic and technical problems which are acting as constraints to rapid expansion of fish production system were reported from the interviewee.
Resumo:
Abstract To achieve higher flexibility and to better satisfy actual customer requirements, there is an increasing tendency to develop and deliver software in an incremental fashion. In adopting this process, requirements are delivered in releases and so a decision has to be made on which requirements should be delivered in which release. Three main considerations that need to be taken account of are the technical precedences inherent in the requirements, the typically conflicting priorities as determined by the representative stakeholders, as well as the balance between required and available effort. The technical precedence constraints relate to situations where one requirement cannot be implemented until another is completed or where one requirement is implemented in the same increment as another one. Stakeholder preferences may be based on the perceived value or urgency of delivered requirements to the different stakeholders involved. The technical priorities and individual stakeholder priorities may be in conflict and difficult to reconcile. This paper provides (i) a method for optimally allocating requirements to increments; (ii) a means of assessing and optimizing the degree to which the ordering conflicts with stakeholder priorities within technical precedence constraints; (iii) a means of balancing required and available resources for all increments; and (iv) an overall method called EVOLVE aimed at the continuous planning of incremental software development. The optimization method used is iterative and essentially based on a genetic algorithm. A set of the most promising candidate solutions is generated to support the final decision. The paper evaluates the proposed approach using a sample project.
Resumo:
Epigenetics has progressed rapidly from an obscure quirk of heredity into a data-heavy ‘omic’ science. Our understanding of the molecular mechanisms of epigenomic regulation, and the extent of its importance in nature, are far from complete, but in spite of such drawbacks, population-level studies are extremely valuable: epigenomic regulation is involved in several processes central to evolutionary biology including phenotypic plasticity, evolvability and the mediation of intragenomic conflicts. The first studies of epigenomic variation within populations suggest high levels of phenotypically relevant variation, with the patterns of epigenetic regulation varying between individuals and genome regions as well as with environment. Epigenetic mechanisms appear to function primarily as genome defences, but result in the maintenance of plasticity together with a degree of buffering of developmental programmes; periodic breakdown of epigenetic buffering could potentially cause variation in rates of phenotypic evolution.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Garrett Hardin's tragedy of the commons is an analogy that shows how individuals driven by self-interest can end up destroying the resource upon which they all depend. The proposed solutions for humans rely on highly advanced skills such as negotiation, which raises the question of how non-human organisms manage to resolve similar tragedies. In recent years, this question has promoted evolutionary biologists to apply the tragedy of the commons to a wide range of biological systems. Here, we provide tools to categorize different types of tragedy and review different mechanisms, including kinship, policing and diminishing returns that can resolve conflicts that could otherwise end in tragedy. A central open question, however, is how often biological systems are able to resolve these scenarios rather than drive themselves extinct through individual-level selection favouring self-interested behaviours.