902 resultados para Dynamic search fireworks algorithm with covariance mutation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of finding the optimal join ordering executing a query to a relational database management system is a combinatorial optimization problem, which makes deterministic exhaustive solution search unacceptable for queries with a great number of joined relations. In this work an adaptive genetic algorithm with dynamic population size is proposed for optimizing large join queries. The performance of the algorithm is compared with that of several classical non-deterministic optimization algorithms. Experiments have been performed optimizing several random queries against a randomly generated data dictionary. The proposed adaptive genetic algorithm with probabilistic selection operator outperforms in a number of test runs the canonical genetic algorithm with Elitist selection as well as two common random search strategies and proves to be a viable alternative to existing non-deterministic optimization approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel Linear Hashtable Method Predicted Hexagonal Search (LHMPHS) method for block based motion compensation is proposed. Fast block matching algorithms use the origin as the initial search center, which often does not track motion very well. To improve the accuracy of the fast BMA's, we employ a predicted starting search point, which reflects the motion trend of the current block. The predicted search centre is found closer to the global minimum. Thus the center-biased BMA's can be used to find the motion vector more efficiently. The performance of the algorithm is evaluated by using standard video sequences, considers the three important metrics: The results show that the proposed algorithm enhances the accuracy of current hexagonal algorithms and is better than Full Search, Logarithmic Search etc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA., Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance or the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an improved Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA, Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). The hashtable structure of LHMEA is improved compared to the original TPA and LHMEA. The evaluation of the algorithm considers the three important metrics being processing time, compression rate and PSNR. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an improved parallel Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. Motion Vectors (MV) are generated from the first-pass LHMEA and used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We used bashtable into video processing and completed parallel implementation. The hashtable structure of LHMEA is improved compared to the original TPA and LHMEA. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. The implementation contains spatial and temporal approaches. The performance of the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The verification possibilities of dynamically collimated treatment beams with a scanning liquid ionization chamber electronic portal image device (SLIC-EPID) are investigated. The ion concentration in the liquid of a SLIC-EPID and therefore the read-out signal is determined by two parameters of a differential equation describing the creation and recombination of the ions. Due to the form of this equation, the portal image detector describes a nonlinear dynamic system with memory. In this work, the parameters of the differential equation were experimentally determined for the particular chamber in use and for an incident open 6 MV photon beam. The mathematical description of the ion concentration was then used to predict portal images of intensity-modulated photon beams produced by a dynamic delivery technique, the sliding window approach. Due to the nature of the differential equation, a mathematical condition for 'reliable leaf motion verification' in the sliding window technique can be formulated. It is shown that the time constants for both formation and decay of the equilibrium concentration in the chamber is in the order of seconds. In order to guarantee reliable leaf motion verification, these time constants impose a constraint on the rapidity of the image-read out for a given maximum leaf speed. For a leaf speed of 2 cm s(-1), a minimum image acquisition frequency of about 2 Hz is required. Current SLIC-EPID systems are usually too slow since they need about a second to acquire a portal image. However, if the condition is fulfilled, the memory property of the system can be used to reconstruct the leaf motion. It is shown that a simple edge detecting algorithm can be employed to determine the leaf positions. The method is also very robust against image noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using properties of moment stationarity we develop exact expressions for the mean and covariance of allele frequencies at a single locus for a set of populations subject to drift, mutation, and migration. Some general results can be obtained even for arbitrary mutation and migration matrices, for example: (1) Under quite general conditions, the mean vector depends only on mutation rates, not on migration rates or the number of populations. (2) Allele frequencies covary among all pairs of populations connected by migration. As a result, the drift, mutation, migration process is not ergodic when any finite number of populations is exchanging genes. in addition, we provide closed form expressions for the mean and covariance of allele frequencies in Wright's finite-island model of migration under several simple models of mutation, and we show that the correlation in allele frequencies among populations can be very large for realistic rates of mutation unless an enormous number of populations are exchanging genes. As a result, the traditional diffusion approximation provides a poor approximation of the stationary distribution of allele frequencies among populations. Finally, we discuss some implications of our results for measures of population structure based on Wright's F-statistics.