996 resultados para Drought strategies
Resumo:
Understanding and predicting plant response to disturbance is of paramount importance in our changing world. Resprouting ability is often considered a simple qualitative trait and used in many ecological studies. Our aim is to show some of the complexities of resprouting while highlighting cautions that need be taken in using resprouting ability to predict vegetation responses across disturbance types and biomes. There are marked differences in resprouting depending on the disturbance type, and fire is often the most severe disturbance because it includes both defoliation and lethal temperatures. In the Mediterranean biome, there are differences in functional strategies to cope with water deficit between resprouters (dehydration avoiders) and nonresprouters (dehydration tolerators); however, there is little research to unambiguously extrapolate these results to other biomes. Furthermore, predictions of vegetation responses to changes in disturbance regimes require consideration not only of resprouting, but also other relevant traits (e.g. seeding, bark thickness) and the different correlations among traits observed in different biomes; models lacking these details would behave poorly at the global scale. Overall, the lessons learned from a given disturbance regime and biome (e.g. crown-fire Mediterranean ecosystems) can guide research in other ecosystems but should not be extrapolated at the global scale.
Resumo:
Using drought as a lens, this article analyses how agro-pastoralists in Makueni district, Kenya adapt their livestock production to climate variability and change. Data were collected from a longitudinal survey of 127 agro-pastoral households. Approximately one-third of the households have inadequate feeds, and livestock diseases are major challenges during non-drought and drought periods. Agro-pastoralists’ responses to drought are reactive and mainly involve intensifying exploitation of resources and the commons. Proactive responses such as improving production resources are few. Poverty, limited responses to market dynamics and inadequate skills constrain adaptations. Many agro-pastoralists’ attachment to livestock deters livestock divestment, favouring disadvantageous sales that result in declining incomes. To improve adaptive capacity, interventions should expose agro-pastoralists to other forms of savings, incorporate agro-pastoralists as agents of change by building their capacity to provide extension services, and maintain infrastructure. Securing livestock mobility, pasture production and access is crucial under the variable social-ecological conditions.
Resumo:
La sequía es un fenómeno natural que se origina por el descenso de las precipitaciones con respecto a una media, y que resulta en la disponibilidad insuficiente de agua para alguna actividad. La creciente presión que se ha venido ejerciendo sobre los recursos hídricos ha hecho que los impactos de la sequía se hayan visto agravados a la vez que ha desencadenado situaciones de escasez de agua en muchas partes del planeta. Los países con clima mediterráneo son especialmente vulnerables a las sequías, y, su crecimiento económico dependiente del agua da lugar a impactos importantes. Para reducir los impactos de la sequía es necesaria una reducción de la vulnerabilidad a las sequías que viene dada por una gestión más eficiente y por una mejor preparación. Para ello es muy importante disponer de información acerca de los impactos y el alcance de este fenómeno natural. Esta investigación trata de abarcar el tema de los impactos de las sequías, de manera que plantea todos los tipos de impactos que pueden darse y además compara sus efectos en dos países (España y Chile). Para ello se proponen modelos de atribución de impactos que sean capaces de medir las pérdidas económicas causadas por la falta de agua. Los modelos propuestos tienen una base econométrica en la que se incluyen variables clave a la hora de evaluar los impactos como es una variable relacionada con la disponibilidad de agua, y otras de otra naturaleza para distinguir los efectos causados por otras fuentes de variación. Estos modelos se adaptan según la fase del estudio en la que nos encontremos. En primer lugar se miden los impactos directos sobre el regadío y se introduce en el modelo un factor de aleatoriedad para evaluar el riesgo económico de sequía. Esto se hace a dos niveles geográficos (provincial y de Unidad de Demanda Agraria) y además en el último se introduce no solo el riesgo de oferta sino también el riesgo de demanda de agua. La introducción de la perspectiva de riesgo en el modelo da lugar a una herramienta de gestión del riesgo económico que puede ser utilizada para estrategias de planificación. Más adelante una extensión del modelo econométrico se desarrolla para medir los impactos en el sector agrario (impactos directos sobre el regadío y el secano e impactos indirectos sobre la Agro Industria) para ello se adapta el modelo y se calculan elasticidades concatenadas entre la falta de agua y los impactos secundarios. Por último se plantea un modelo econométrico para el caso de estudio en Chile y se evalúa el impacto de las sequías debidas al fenómeno de La Niña. iv Los resultados en general muestran el valor que brinda el conocimiento más preciso acerca de los impactos, ya que en muchas ocasiones se tiende a sobreestimar los daños realmente producidos por la falta de agua. Los impactos indirectos de la sequía confirman su alcance a la vez que son amortiguados a medida que nos acercamos al ámbito macroeconómico. En el caso de Chile, su diferente gestión muestra el papel que juegan el fenómeno de El Niño y La Niña sobre los precios de los principales cultivos del país y sobre el crecimiento del sector. Para reducir las pérdidas y su alcance se deben plantear más medidas de mitigación que centren su esfuerzo en una gestión eficiente del recurso. Además la prevención debe jugar un papel muy importante para reducir los riesgos que pueden sufrirse ante situaciones de escasez. ABSTRACT Drought is a natural phenomenon that originates by the decrease in rainfall in comparison to the average, and that results in water shortages for some activities. The increasing pressure on water resources has augmented the impact of droughts just as water scarcity has become an additional problem in many parts of the planet. Countries with Mediterranean climate are especially vulnerable to drought, and its waterdependent economic growth leads to significant impacts. To reduce the negative impacts it is necessary to deal with drought vulnerability, and to achieve this objective a more efficient management is needed. The availability of information about the impacts and the scope of droughts become highly important. This research attempts to encompass the issue of drought impacts, and therefore it characterizes all impact types that may occur and also compares its effects in two different countries (Spain and Chile). Impact attribution models are proposed in order to measure the economic losses caused by the lack of water. The proposed models are based on econometric approaches and they include key variables for measuring the impacts. Variables related to water availability, crop prices or time trends are included to be able to distinguish the effects caused by any of the possible sources. These models are adapted for each of the parts of the study. First, the direct impacts on irrigation are measured and a source of variability is introduced into the model to assess the economic risk of drought. This is performed at two geographic levels provincial and Agricultural Demand Unit. In the latter, not only the supply risk is considered but also the water demand risk side. The introduction of the risk perspective into the model results in a risk management tool that can be used for planning strategies. Then an extension of the econometric model is developed to measure the impacts on the agricultural sector (direct impacts on irrigated and rainfed productions and indirect impacts on the Agri-food Industry). For this aim the model is adapted and concatenated elasticities between the lack of water and the impacts are estimated. Finally an econometric model is proposed for the Chilean case study to evaluate the impact of droughts, especially caused by El Niño Southern Oscillation. The overall results show the value of knowing better about the precise impacts that often tend to be overestimated. The models allow for measuring accurate impacts due to the lack of water. Indirect impacts of drought confirm their scope while they confirm also its dilution as we approach the macroeconomic variables. In the case of Chile, different management strategies of the country show the role of ENSO phenomena on main crop prices and on economic trends. More mitigation measures focused on efficient resource management are necessary to reduce drought losses. Besides prevention must play an important role to reduce the risks that may be suffered due to shortages.
Resumo:
At Mediterranean regions and particularly in southern Portugal, it is imperative to identify grape varieties more adapted to warm and dry climates in order to overcome future climatic changes. Two Vitis vinifera genotypes, Aragonez (syn. Tempranillo) and Trincadeira, were selected to assess their physiological responses to soil water stress. Vines were subjected to four irrigation regimes: irrigated during all phenological cycle, non-irrigated during all phenological cycle, non irrigated until veraison, irrigated after veraison. Predawn leaf water potential was much higher in Trincadeira than Aragonez in non- irrigated plants. This result is in accordance with its higher stomatal control efficiency in this variety (Trincadeira). Photosynthetic capacity (Amax at saturating light intensity) decreased due to stomatal and biochemical limitations under water stress. However, recovery capacity of leaf water status after irrigation was faster in Trincadeira. Yield and yield x Brix increased when irrigation occurred after veraison, particularly in Trincadeira. These results show that Trincadeira presents a drought adaptation than Aragonez. Ratio of variable to maximum fluorescence Fv/Fm and total leaf chlorophyll related with leaf water potential for both species. Reflectance Normalized Difference Vegetation Index (NDVI705), Red Edge Inflexion Point Index and Photochemical Reflectance Index were related with irrigation treatment. Relative water content and specific leaf area were similar between varieties. In conclusion, we suggested that there is variation among the genotypes and the main physiological parameters for variety selection, for drought, were leaf water potential, stomatal conductance and reflectance indexes.
Resumo:
The effects of climate change can result in dramatic consequences in specific ecosystems such as montados that are seriously threatened by the absence of cork and holm oak (Quercus suber and Q. rotundifolia) natural regeneration. Shrubs of the genus Cistus, which are among the most important elements of encroached montados, seem to promote soil rehabilitation and enhance oak regeneration (Simões et al. 2009). In this context, we compared the life strategies and evaluated the potential ability of Cistus species to adapt to the increasing drought expected for the Mediterranean region, and thus their role on the sustainability of cork oak montados.
Resumo:
As a result of rapid urbanisation, population growth, changes in lifestyle, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resource is increasingly being realised. Many city administrations around the world are struggling to provide water security for their residents to maintain lifestyle and economic growth. This chapter reviews the global challenge of providing freshwater to sustain lifestyles and economic growth, and the contributing challenges of climate change, urbanisation, population growth and problems in rainfall distribution. The chapter proceeds to evaluate major alternatives to current water sources such as conservation, recycling and reclamation, and desalination. Integrated water resource management is briefly looked at to explore its role in complementing water provision. A comparative study on alternative resources is undertaken to evaluate their strengths, weaknesses, opportunities and constraints, and the results are discussed.
Resumo:
Cotton is one of the most important irrigated crops in subtropical Australia. In recent years, cotton production has been severely affected by the worst drought in recorded history, with the 2007–08 growing season recording the lowest average cotton yield in 30 years. The use of a crop simulation model to simulate the long-term temporal distribution of cotton yields under different levels of irrigation and the marginal value for each unit of water applied is important in determining the economic feasibility of current irrigation practices. The objectives of this study were to: (i) evaluate the CROPGRO-Cotton simulation model for studying crop growth under deficit irrigation scenarios across ten locations in New South Wales (NSW) and Queensland (Qld); (ii) evaluate agronomic and economic responses to water inputs across the ten locations; and (iii) determine the economically optimal irrigation level. The CROPGRO-Cotton simulation model was evaluated using 2 years of experimental data collected at Kingsthorpe, Qld. The model was further evaluated using data from nine locations between northern NSW and southern Qld. Long-term simulations were based on the prevalent furrowirrigation practice of refilling the soil profile when the plant -available soil water content is<50%. The model closely estimated lint yield for all locations evaluated. Our results showed that the amounts of water needed to maximise profit and maximise yield are different, which has economic and environmental implications. Irrigation needed to maximise profits varied with both agronomic and economic factors, which can be quite variable with season and location. Therefore, better tools and information that consider the agronomic and economic implications of irrigation decisions need to be developed and made available to growers.
Resumo:
As a result of rapid urbanisation, population growth, changes in lifestyle, pollution and the impacts of climate change, water provision has become a critical challenge for planners and policy-makers. In the wake of increasingly difficult water provision and drought, the notion that freshwater is a finite and vulnerable resource is increasingly being realised. Many city administrations around the world are struggling to provide water security for their residents to maintain lifestyle and economic growth. This chapter reviews the global challenge of providing freshwater to sustain lifestyles and economic growth, and the contributing challenges of climate change, urbanisation, population growth and problems in rainfall distribution. The chapter proceeds to evaluate major alternatives to current water sources such as conservation, recycling and reclamation, and desalination. Integrated water resource management is briefly looked at to explore its role in complementing water provision. A comparative study on alternative resources is undertaken to evaluate their strengths, weaknesses, opportunities and constraints, and the results are discussed.
Resumo:
Research on soil fertility management in sub-Saharan Africa was criticized lately for largely ignoring farmers’ management strategies and the underlying principles. To fill this gap of knowledge, detailed interviews were conducted with 108 farm households about their rationale in managing the soil fertility of 307 individual fields in the agro-pastoral village territory of Chikal in western Niger. To amplify the farmers’ information on manuring and corralling practices, repeated measurements of applied amounts of manure were carried out within six 1-km^2 monitoring areas from February to October 1998. The interviews revealed that only 2% of the fields were completely fallowed for a period of 1–15 years, but 40% of the fields were at least partially fallowed. Mulching of crop residues was mainly practiced to fight wind erosion but was restricted to 36% of the surveyed fields given the alternative use of straw as livestock feed. Manure application and livestock corralling, as most effective tools to enhance soil fertility, were targeted to less than 30% of the surveyed fields. The application of complete fallow and manuring and corralling practices were strongly related to the households’ endowment with resources, especially with land and livestock. Within particular fields, measures were mainly applied to spots of poor soil fertility, while the restoration of the productivity of hard pans was of secondary importance. Given the limited spatial coverage of indigenous soil fertility measures and their strong dependence on farmers’ wealth, supplementary strategies to restrict the decline of soil fertility in the drought prone areas of Niger with their heavily weathered soils are needed.
Resumo:
Poor adaptation to climate change is a major threat to sustainable rice production in Nigeria. Determinants of appropriate climate-change adaptation strategies used by rice farmers in Southwestern Nigeria have not been fully investigated. In this study, the determinants of climate change adaptation strategies used by rice farmers in Southwestern Nigeria were investigated. Data were obtained through Focus Group Discussions (FGDs) and field survey conducted in the study areas. Data obtained were analyzed using descriptive and inferential statistical tools such as percentage and regression analysis. The major climate change adaptation strategies used by the respondents included; planting improved rice variety such as Federal Agricultural Research Oryza (FARO) (80.5 %), seeking early warning information (80.9 %), shifting planting date until the weather condition was favourable (99.1 %), and using chemical fertilizer on their farms in order to maintain soil fertility (20.5 %). The determinants of climate change adaptation strategies used by the farmers, included access to early warning information (β=43.04), access to fertilizer (β=5.78), farm plot size (β=–12.04) and access to regular water supply (β=–24.79). Climate change adaptation required provision of incentives to farmers, training on drought and flood control, and the use of improved technology to obtain higher yield.
Resumo:
The impacts of climate change on nitrogen (N) in a lowland chalk stream are investigated using a dynamic modelling approach. The INCA-N model is used to simulate transient daily hydrology and water quality in the River Kennet using temperature and precipitation scenarios downscaled from the General Circulation Model (GCM) output for the period 1961-2100. The three GCMs (CGCM2, CSIRO and HadCM3) yield very different river flow regimes with the latter projecting significant periods of drought in the second half of the 21st century. Stream-water N concentrations increase over time as higher temperatures enhance N release from the soil, and lower river flows reduce the dilution capacity of the river. Particular problems are shown to occur following severe droughts when N mineralization is high and the subsequent breaking of the drought releases high nitrate loads into the river system. Possible strategies for reducing climate-driven N loads are explored using INCA-N. The measures include land use change or fertiliser reduction, reduction in atmospheric nitrate and ammonium deposition, and the introduction of water meadows or connected wetlands adjacent to the river. The most effective strategy is to change land use or reduce fertiliser use, followed by water meadow creation, and atmospheric pollution controls. Finally, a combined approach involving all three strategies is investigated and shown to reduce in-stream nitrate concentrations to those pre-1950s even under climate change. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Droughts tend to evolve slowly and affect large areas simultaneously, which suggests that improved understanding of spatial coherence of drought would enable better mitigation of drought impacts through enhanced monitoring and forecasting strategies. This study employs an up-to-date dataset of over 500 river flow time series from 11 European countries, along with a gridded precipitation dataset, to examine the spatial coherence of drought in Europe using regional indicators of precipitation and streamflow deficit. The drought indicators were generated for 24 homogeneous regions and, for selected regions, historical drought characteristics were corroborated with previous work. The spatial coherence of drought characteristics was then examined at a European scale. Historical droughts generally have distinctive signatures in their spatio-temporal development, so there was limited scope for using the evolution of historical events to inform forecasting. Rather, relationships were explored in time series of drought indicators between regions. Correlations were generally low, but multivariate analyses revealed broad continental-scale patterns, which appear to be related to large-scale atmospheric circulation indices (in particular, the North Atlantic Oscillation and the East Atlantic West Russia pattern). A novel methodology for forecasting was developed (and demonstrated with reference to the United Kingdom), which predicts drought from drought i.e. uses spatial coherence of drought to facilitate early warning of drought in a target region, from drought which is developing elsewhere in Europe.Whilst the skill of the methodology is relatively modest at present, this approach presents a potential new avenue for forecasting, which offers significant advantages in that it allows prediction for all seasons, and also shows some potential for forecasting the termination of drought conditions.
Resumo:
Background and aims Medicago sativa L. is widely grown in southern Australia, but is poorly adapted to dry, hot summers. This study aimed to identify perennial herbaceous legumes with greater resistance to drought stress and explore their adaptive strategies. Methods Ten herbaceous perennial legume species/accessions were grown in deep pots in a sandy, low-phosphorus field soil in a glasshouse. Drought stress was imposed by ceasing to water. A companion M. sativa plant in each pot minimised differences in leaf area and water consumption among species. Plants were harvested when stomatal conductance of stressed plants decreased to around 10% of well watered plants. Results A range of responses to drought stress were identified, including: reduced shoot growth; leaf curling; thicker pubescence on leaves and stems; an increased root:shoot ratio; an increase, decrease or no change in root distribution with depth; reductions in specific leaf area or leaf water potential; and osmotic adjustment. The suite of changes differed substantially among species and, less so, among accessions. Conclusions The inter- and intra-specific variability of responses to drought-stress in the plants examined suggests a wide range of strategies are available in perennial legumes to cope with drying conditions, and these could be harnessed in breeding/selection programs.