983 resultados para Douglas fir
Resumo:
Douglas fir is one of the most important trees in northwestern California. Regional pollen records suggest that it has become prominent only in the late Holocene. The primary cause for this change is probably southward stabilization of the mean airstream.
Resumo:
Separating edaphic impacts on tree distributions from those of climate and geography is notoriously difficult. Aboveground and belowground factors play important roles, and determining their relative contribution to tree success will greatly assist in refining predictive models and forestry strategies in a changing climate. In a common glasshouse, seedlings of interior Douglas-fir (Pseudotsuga menziesii var. glauca) from multiple populations were grown in multiple forest soils. Fungicide was applied to half of the seedlings to separate soil fungal and nonfungal impacts on seedling performance. Soils of varying geographic and climatic distance from seed origin were compared, using a transfer function approach. Seedling height and biomass were optimized following seed transfer into drier soils, whereas survival was optimized when elevation transfer was minimised. Fungicide application reduced ectomycorrhizal root colonization by c. 50%, with treated seedlings exhibiting greater survival but reduced biomass. Local adaptation of Douglas-fir populations to soils was mediated by soil fungi to some extent in 56% of soil origin by response variable combinations. Mediation by edaphic factors in general occurred in 81% of combinations. Soil biota, hitherto unaccounted for in climate models, interacts with biogeography to influence plant ranges in a changing climate.
Resumo:
Aboveground biomass predictive equations were developed for a highly productive 47-year-old mixed Douglas-fir and western hemlock stand in southwest Washington State to characterize the preharvest stand attributes for the Fall River Long-Term Site Productivity Study. The equations were developed using detailed biomass data taken from 31 Douglas-fir and 11 western hemlock trees within the original stand. The stand had an average of 615 live trees per hectare, with an average dbh of 35.6 cm (39.1 cm for Douglas-fir and 33.3 cm for western hemlock) and an average total tree height of 31.6 m (32.8 m for Douglas-fir and 30.2 m for western hemlock). Equations developed were of the form In Y = b(1) + b(2) In dbh, where Y = biomass in kg, dbh = diameter in cm at 1.3 m height, b(1) = intercept, and b(2) = slope of equation. Each tree part was estimated separately and also combined into total aboveground biomass. The total aboveground biomass estimation equations were In Y = -0.9950 + 2.0765 In dbh for Douglas-fir, and In Y = -1.6612 + 2.2321 In dbh for western hemlock. The estimate of the aboveground live-free biomass was of 395 Mg ha(-1) (235 Mg ha(-1) for Douglas-fir and 160 Mg ha(-1) for western hemlock), with 9.5, 29.3, 12.9, 308, and 32.7 Mg ha(-1) in the foliage, live branches, dead branches, stem wood, and stem hark, respectively. When compared with biomass estimates from six other studies, ranging in age from 22 to 110 years and from 96.3 to 636 Mg ha(-1), the biomass of the Fall River site was relatively high for its age, indicating very high productivity.