991 resultados para Double Strap Joint


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strengthening of steel structures using externally-bonded carbon fibre reinforced polymers ‘CFRP’ is a rapidly developing technique. This paper describes the behaviour of axially loaded flat steel plates strengthened using carbon fibre reinforced polymer sheets. Two steel plates were joined together with adhesive and followed by the application of carbon fibre sheet double strap joint with different bond lengths. The behaviour of the specimens was further investigated by using nonlinear finite element analysis to predict the failure modes and load capacity. In this study, bond failure is the dominant failure mode for normal modulus (240 GPa) CFRP bonding which closely matched the results of finite elements. The predicted ultimate loads from the FE analysis are found to be in good agreement with experimental values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced composite materials offer remarkable potential in the upgrade of civil engineering structures. The evolution of CFRP (carbon fibre reinforced polymer) technologies and their versatility for applications in civil constructions require comprehensive and reliable codes of practice. Guidelines are available on the rehabilitation and retrofit of concrete structures with advanced composite materials. However, there is a need to develop appropriate design guidelines for CFRP strengthened steel structures. It is important to understand the bond characteristics between CFRP and steel plates. This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length is similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esposizione di comportamenti e caratteristiche principali dei giunti incollati. Il metodo agli elementi finiti è stato studiato in modo da realizzare un modello accurato di un sistema fisico. L’analisi agli elementi finiti è stata utilizzata per effettuare una simulazione numerica di un double-strap joint in alluminio e in CFRP sotto un carico di trazione assiale. L’effetto di una modifica della distanza tra le lastre è stato studiato e i risultati confrontati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of a series of tension tests on CFRP bonded steel plate double strap joints. The main aim of this research is to provide detailed understanding of bond characteristics using experimental and numerical analysis of strengthened double strap joints under tension. A parametric study has been performed by numerical modelling with the variables of CFRP bond lengths, adhesive maximum strain and adhesive layer thicknesses. Finally, bond-slip models are proposed for three different types of adhesives within the range of the parametric study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a series of double strap shear tests loaded in tension to investigate the bond between CFRP sheets and steel plates. Both normal modulus (240 GPa) and high modulus (640 GPa) CFRPs were used in the test program. Strain gauges were mounted to capture the strain distribution along the CFRP length. Different failure modes were observed for joints with normal modulus CFRP and those with high modulus CFRP. The strain distribution along the CFRP length was found to be similar for the two cases. A shorter effective bond length was obtained for joints with high modulus CFRP whereas larger ultimate load carrying capacity can be achieved for joints with normal modulus CFRP when the bond length is long enough. The Hart-Smith Model was modified to predict the effective bond length and ultimate load carrying capacity of joints between the normal modulus CFRP and steel plates. The Multilayer Distribution Model developed by the authors was modified to predict the load carrying capacity of joints between the high modulus CFRP and steel plates. The predicted values agreed well with experimental ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on an experimental and finite element method (FEM) parametric study of adhesively-bonded single and double-strap repairs on carbon-epoxy structures under buckling unrestrained compression. The influence of the overlap length and patch thickness was evaluated. This loading gains a particular significance from the additional characteristic mechanisms of structures under compression, such as fibres microbuckling, for buckling restrained structures, or global buckling of the assembly, if no transverse restriction exists. The FEM analysis is based on the use of cohesive elements including mixed-mode criteria to simulate a cohesive fracture of the adhesive layer. Trapezoidal laws in pure modes I and II were used to account for the ductility of most structural adhesives. These laws were estimated for the adhesive used from double cantilever beam (DCB) and end-notched flexure (ENF) tests, respectively, using an inverse technique. The pure mode III cohesive law was equalled to the pure mode II one. Compression failure in the laminates was predicted using a stress-based criterion. The accurate FEM predictions open a good prospect for the reduction of the extensive experimentation in the design of carbon-epoxy repairs. Design principles were also established for these repairs under buckling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nel presente lavoro sono esposti i comportamenti e le caratteristiche principali dei giunti incollati. Il metodo agli elementi finiti è stato studiato in modo da realizzare un modello accurato di un sistema fisico. L’analisi agli elementi finiti è stata utilizzata per effettuare una simulazione numerica di un single-strap joint in alluminio e in CFRP sotto un carico di trazione assiale. L’effetto di una modifica della distanza tra le lastre è stato studiato e i risultati confrontati.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advanced composite materials offer remarkable potential in the strengthening of Civil Engineering structures. This research is targeted to provide in depth knowledge and understanding of bond characteristics of advanced and corrosion resistant material carbon fibre reinforced polymer (CFRP) that has a unique design tailor-ability and cost effective nature. The objective of this research is to investigate and compare the bonding mechanism between CFRP strengthened single and double strap steel joints. Investigations have been made in regards to failure mode, ultimate load and effective bond length for CFRP strengthened double and single strap joints. A series of tensile tests were conducted with different bond lengths for both type of joints. The bond behaviour of these specimens was further investigated by using nonlinear finite element analysis. Finally a bilinear relationship of shear stress-slip has been proposed by using the Finite element model for single and double strap joints.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, an experimental study was performed on the influence of plug-filling, loading rate and temperature on the tensile strength of single-strap (SS) and double-strap (DS) repairs on aluminium structures. Whilst the main purpose of this work was to evaluate the feasibility of plug-filling for the strength improvement of these repairs, a parallel study was carried out to assess the sensitivity of the adhesive to external features that can affect the repairs performance, such as the rate of loading and environmental temperature. The experimental programme included repairs with different values of overlap length (L O = 10, 20 and 30 mm), and with and without plug-filling, whose results were interpreted in light of experimental evidence of the fracture modes and typical stress distributions for bonded repairs. The influence of the testing speed on the repairs strength was also addressed (considering 0.5, 5 and 25 mm/min). Accounting for the temperature effects, tests were carried out at room temperature (≈23°C), 50 and 80°C. This permitted a comparative evaluation of the adhesive tested below and above the glass transition temperature (T g), established by the manufacturer as 67°C. The combined influence of these two parameters on the repairs strength was also analysed. According to the results obtained from this work, design guidelines for repairing aluminium structures were

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adhesively bonded repairs offer an attractive option for repair of aluminium structures, compared to more traditional methods such as fastening or welding. The single-strap (SS) and double-strap (DS) repairs are very straightforward to execute but stresses in the adhesive layer peak at the overlap ends. The DS repair requires both sides of the damaged structures to be reachable for repair, which is often not possible. In strap repairs, with the patches bonded at the outer surfaces, some limitations emerge such as the weight, aerodynamics and aesthetics. To minimize these effects, SS and DS repairs with embedded patches were evaluated in this work, such that the patches are flush with the adherends. For this purpose, in this work standard SS and DS repairs, and also with the patches embedded in the adherends, were tested under tension to allow the optimization of some repair variables such as the overlap length (LO) and type of adhesive, thus allowing the maximization of the repair strength. The effect of embedding the patch/patches on the fracture modes and failure loads was compared with finite elements (FE) analysis. The FE analysis was performed in ABAQUS® and cohesive zone modelling was used for the simulation of damage onset and growth in the adhesive layer. The comparison with the test data revealed an accurate prediction for all kinds of joints and provided some principles regarding this technique.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon fiber reinforced polymer (CFRP) sheets have established a strong position as an effective method for innovative structural rehabilitation. However, the use of externally bonded CFRP in the repair and rehabilitation of steel structures is a relatively new technique that has the potential to improve the way structures are repaired. An important step toward understanding bond behaviour is to have an estimation of local bond stress versus slip relationship. The current study aims to establish the bond-slip model for CFRP sheets bonded to steel plate. To obtain the shear stress versus slippage relationship, a series of double strap tension type bond tests were conducted. This paper reports on the findings of the experimental studies. The strain and stress distributions measured in the specimens for two different bond lengths. The results show a preliminary bi-linear bond-slip model may be adopted for CFRP sheet bonded with steel plate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Usage of new smart materials in retrofitting of structures has become popular within last decade. Carbon fiber reinforced polymer (CFRP) has been widely used in retrofitting and strengthening of concrete structures and its usage in metallic structures is still in the developing stage. The variation of mechanical properties of CFRP and the consequent effects on strengthening and retrofitting CFRP systems are yet to be investigated under different loading and environmental conditions. This paper presents the results of CFRP strengthened and retrofitted corroded steel plate double strap joints under tension. An accelerated corrosion cell has been developed to accelerate the corrosion of the steel samples and CFRP strengthened samples. The results show a direct comparison of bond characteristics of CFRP strengthened and retrofitted steel double strap joints.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La détermination de la structure tertiaire du ribosome fut une étape importante dans la compréhension du mécanisme de la synthèse des protéines. Par contre, l’élucidation de la structure du ribosome comme tel ne permet pas une compréhension de sa fonction. Pour mieux comprendre la nature des relations entre la structure et la fonction du ribosome, sa structure doit être étudiée de manière systématique. Au cours des dernières années, nous avons entrepris une démarche systématique afin d’identifier et de caractériser de nouveaux motifs structuraux qui existent dans la structure du ribosome et d’autres molécules contenant de l’ARN. L’analyse de plusieurs exemples d’empaquetage de deux hélices d’ARN dans la structure du ribosome nous a permis d’identifier un nouveau motif structural, nommé « G-ribo ». Dans ce motif, l’interaction d’une guanosine dans une hélice avec le ribose d’un nucléotide d’une autre hélice donne naissance à un réseau d’interactions complexes entre les nucléotides voisins. Le motif G-ribo est retrouvé à 8 endroits dans la structure du ribosome. La structure du G-ribo possède certaines particularités qui lui permettent de favoriser la formation d’un certain type de pseudo-nœuds dans le ribosome. L’analyse systématique de la structure du ribosome et de la ARNase P a permis d’identifier un autre motif structural, nommé « DTJ » ou « Double-Twist Joint motif ». Ce motif est formé de trois courtes hélices qui s’empilent l’une sur l’autre. Dans la zone de contact entre chaque paire d’hélices, deux paires de bases consécutives sont surenroulées par rapport à deux paires de bases consécutives retrouvées dans l’ARN de forme A. Un nucléotide d’une paire de bases est toujours connecté directement à un nucléotide de la paire de bases surenroulée, tandis que les nucléotides opposés sont connectés par un ou plusieurs nucléotides non appariés. L’introduction d’un surenroulement entre deux paires de bases consécutives brise l’empilement entre les nucléotides et déstabilise l’hélice d’ARN. Dans le motif DTJ, les nucléotides non appariés qui lient les deux paires de bases surenroulées interagissent avec une des trois hélices qui forment le motif, offrant ainsi une stratégie élégante de stabilisation de l’arrangement. Pour déterminer les contraintes de séquences imposées sur la structure tertiaire d’un motif récurrent dans le ribosome, nous avons développé une nouvelle approche expérimentale. Nous avons introduit des librairies combinatoires de certains nucléotides retrouvés dans des motifs particuliers du ribosome. Suite à l’analyse des séquences alternatives sélectionnées in vivo pour différents représentants d’un motif, nous avons été en mesure d’identifier les contraintes responsables de l’intégrité d’un motif et celles responsables d’interactions avec les éléments qui forment le contexte structural du motif. Les résultats présentés dans cette thèse élargissent considérablement notre compréhension des principes de formation de la structure d’ARN et apportent une nouvelle façon d’identifier et de caractériser de nouveaux motifs structuraux d’ARN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since the first underground nuclear explosion, carried out in 1958, the analysis of seismic signals generated by these sources has allowed seismologists to refine the travel times of seismic waves through the Earth and to verify the accuracy of the location algorithms (the ground truth for these sources was often known). Long international negotiates have been devoted to limit the proliferation and testing of nuclear weapons. In particular the Treaty for the comprehensive nuclear test ban (CTBT), was opened to signatures in 1996, though, even if it has been signed by 178 States, has not yet entered into force, The Treaty underlines the fundamental role of the seismological observations to verify its compliance, by detecting and locating seismic events, and identifying the nature of their sources. A precise definition of the hypocentral parameters represents the first step to discriminate whether a given seismic event is natural or not. In case that a specific event is retained suspicious by the majority of the State Parties, the Treaty contains provisions for conducting an on-site inspection (OSI) in the area surrounding the epicenter of the event, located through the International Monitoring System (IMS) of the CTBT Organization. An OSI is supposed to include the use of passive seismic techniques in the area of the suspected clandestine underground nuclear test. In fact, high quality seismological systems are thought to be capable to detect and locate very weak aftershocks triggered by underground nuclear explosions in the first days or weeks following the test. This PhD thesis deals with the development of two different seismic location techniques: the first one, known as the double difference joint hypocenter determination (DDJHD) technique, is aimed at locating closely spaced events at a global scale. The locations obtained by this method are characterized by a high relative accuracy, although the absolute location of the whole cluster remains uncertain. We eliminate this problem introducing a priori information: the known location of a selected event. The second technique concerns the reliable estimates of back azimuth and apparent velocity of seismic waves from local events of very low magnitude recorded by a trypartite array at a very local scale. For the two above-mentioned techniques, we have used the crosscorrelation technique among digital waveforms in order to minimize the errors linked with incorrect phase picking. The cross-correlation method relies on the similarity between waveforms of a pair of events at the same station, at the global scale, and on the similarity between waveforms of the same event at two different sensors of the try-partite array, at the local scale. After preliminary tests on the reliability of our location techniques based on simulations, we have applied both methodologies to real seismic events. The DDJHD technique has been applied to a seismic sequence occurred in the Turkey-Iran border region, using the data recorded by the IMS. At the beginning, the algorithm was applied to the differences among the original arrival times of the P phases, so the cross-correlation was not used. We have obtained that the relevant geometrical spreading, noticeable in the standard locations (namely the locations produced by the analysts of the International Data Center (IDC) of the CTBT Organization, assumed as our reference), has been considerably reduced by the application of our technique. This is what we expected, since the methodology has been applied to a sequence of events for which we can suppose a real closeness among the hypocenters, belonging to the same seismic structure. Our results point out the main advantage of this methodology: the systematic errors affecting the arrival times have been removed or at least reduced. The introduction of the cross-correlation has not brought evident improvements to our results: the two sets of locations (without and with the application of the cross-correlation technique) are very similar to each other. This can be commented saying that the use of the crosscorrelation has not substantially improved the precision of the manual pickings. Probably the pickings reported by the IDC are good enough to make the random picking error less important than the systematic error on travel times. As a further justification for the scarce quality of the results given by the cross-correlation, it should be remarked that the events included in our data set don’t have generally a good signal to noise ratio (SNR): the selected sequence is composed of weak events ( magnitude 4 or smaller) and the signals are strongly attenuated because of the large distance between the stations and the hypocentral area. In the local scale, in addition to the cross-correlation, we have performed a signal interpolation in order to improve the time resolution. The algorithm so developed has been applied to the data collected during an experiment carried out in Israel between 1998 and 1999. The results pointed out the following relevant conclusions: a) it is necessary to correlate waveform segments corresponding to the same seismic phases; b) it is not essential to select the exact first arrivals; and c) relevant information can be also obtained from the maximum amplitude wavelet of the waveforms (particularly in bad SNR conditions). Another remarkable point of our procedure is that its application doesn’t demand a long time to process the data, and therefore the user can immediately check the results. During a field survey, such feature will make possible a quasi real-time check allowing the immediate optimization of the array geometry, if so suggested by the results at an early stage.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

As ligações adesivas têm sido utilizadas em diversas áreas de aplicação. A utilização das juntas adesivas em aplicações industriais tem vindo a aumentar nos últimos anos, por causa das vantagens significativas que apresentam comparativamente com os métodos tradicionais de ligação tais como soldadura, ligações aparafusadas e rebitadas. A redução de peso, redução de concentrações de tensões e facilidade de fabrico são algumas das principais vantagens das ligações adesivas. Devido à crescente utilização das ligações adesivas, torna-se necessário a existência de ferramentas que permitam prever a resistência das juntas com elevada precisão. Assim, para a análise de juntas adesivas, está a ser cada vez mais utilizado o método de Elementos Finitos. Neste âmbito o Método de Elementos Finitos eXtendido (MEFX) perfila-se como um método capaz de prever o comportamento da junta, embora este ainda não esteja convenientemente estudado no que diz respeito à aplicação a juntas adesivas. Neste trabalho é apresentado um estudo experimental e numérico pelo MEFX de juntas de sobreposição dupla, nas quais são aplicados adesivos que variam desde frágeis e rígidos, como o caso do Araldite® AV138, até adesivos mais dúcteis, como o Araldite® 2015 e o Sikaforce® 7888. Foram considerados substratos de alumínio (AW6082-T651) em juntas com diferentes comprimentos de sobreposição, sendo sujeitos a esforços de tração de forma a avaliar o seu desempenho. Na análise numérica foi realizada uma análise da distribuição de tensões na camada adesiva, a previsão da resistência das juntas pelo MEFX segundo critérios de iniciação de dano baseados em tensões e deformações, e ainda um estudo sobre o critério energético de propagação de dano. A análise por MEFX revelou que este método é bastante preciso quando usados os critérios de iniciação de dano MAXS e QUADS, e parâmetro com valor de 1 no critério energético de propagação de dano. Apesar de ser um método pouco estudado na literatura comparativamente com outros, o MEFX apresentou resultados muito satisfatórios.