132 resultados para Domes
Resumo:
Vegetation attributes were consistent with the successional stage of each dome in the primary sere; however, the geomorphologic units did not follow the same pattern. The influence of the rates of plant colonization and soil formation are responsible for the decrease of the successional rates from footslopes, to summits, to slopes. The vegetation successionally changes from Juniperus scrub, to Juniperus wood and forest, and there is little species replacement since the similarity in species composition is high between the 3 domes.
Resumo:
The following main lithostratigraphic units have been distinguished in the Domes Area. The Kibaran basement complex composed of gneisses, migmatites with amphibolite bands and metagranites is exposed in dome structures; metamorphic features of Kibaran age have been almost completely obliterated by extensive Lufilian reactivation. The post-Kibaran cover sequence is subdivided into the Lower Roan Group consisting of well-preserved quartzites with high Mg content, talc-bearing, extremely foliated schists intercalated with pseudo-conglomerates of tectonic origin and the Upper Roan Group including dolomitic marbles with rare stromatolites, metapelites and a sequence of detrital metasediments, with local volcano-sedimentary components and interlayered banded ironstones. The sediments of the Lower Roan Group are interpreted as continental to lagoonal-evaporitic deposits partly converted into the talc-kyanite + garnet assemblage characteristic of ``white schists''. The dolomites and metapelites of the Upper Roan Group are attributed to a carbonate platform sequence progressively subsiding under terrigenous deposits, whilst the detrital metasediments and BIF may be interpreted as a basinal sequence, probably deposited on oceanic crust grading laterally into marbles. Metagabbros and metabasalts are considered as remnants of an ocean-floor-type crustal unit probably related to small basins. Alkaline stocks of Silurian age intruded the post-Kibaran cover. Significant ancestral tectonic discontinuities promoted the development of a nappe pile that underwent high-pressure metamorphism during the Lufilian orogeny and all lithostratigraphic units. Rb-Sr and K-Ar and U-Pb data indicate an age of 700 Ma for the highest grade metamorphism and 500 Ma for blocking of the K-Ar and Rb-Sr system in micas, corresponding to the time when the temperature dropped below 350-degrees-400-degrees-C and to an age of about 400 Ma for the emplacement of hypabyssal syenitic bodies. A first phase of crustal shortening by decoupling of basement and cover slices along shallow shear zones has been recognized. Fluid-rich tectonic slabs of cover sediments were thus able to transport fluids into the anhydrous metamorphic basement or mafic units. During the subsequent metamorphic re-equilibration stage of high pressure, pre-existing thrusts horizons were converted into recrystallized mylonites. Due to uplift, rocks were re-equilibrated into assemblages compatible with lower pressures and slightly lower temperatures. This stage occurs under a decompressional (nearly adiabatic) regime, with P(fluid) almost-equal-to P(lithostatic). It is accompanied by metasomatic development of minerals, activated by injection of hot fluids. New or reactivated shear zones and mylonitic belts were the preferred conduits of fluids. The most evident regional-scale effect of these processes is the intense metasomatic scapolitization of formerly plagioclase-rich lithologies. Uraninite mineralization can probably be assigned to the beginning of the decompressional stage. A third regional deformation phase characterized by open folds and local foliation is not accompanied by significant growth of new minerals. However, pitchblende mineralization can be ascribed to this phase as late-stage, short-range remobilization of previously existing deposits. Finally, shallow alkaline massifs were emplaced when the level of the Domes Area now exposed was already subjected to exchange with meteoric circuits, activated by residual geothermal gradients generally related to intrusions or rifting. Most of the superficial U-showings with U-oxidation products were probably generated during this relatively recent phase.
Resumo:
A. W.
Resumo:
von J. Wetter
Resumo:
The inner oval dome of the Basílica de la Virgen los Desamparados, built in 1701, is one of the most slender masonry vaults ever built. It is a tile dome with a total thickness of 80 mm and a main span of 18.50 m. It was built without centering with great ingenuity and economy of means, thirty three years after the termination of the building in 1667. The dome is in contact with the external dome only in the inferior part with the projecting ribs of the intrados, the lunettes of the windows, and, in the upper part, through 126 inclined iron bars. This unique construction was revealed in the 1990's in the studies previous to the restoration of the Basílica, and has given rise to different theories about the mode of construction and the structural behaviour and safety of the dome. The present contribution aims to provide a plausible hypothesis about the mode of construction and to explain the safety of the inner dome which has stood, without need of repairs or reinforcement, for 300 hundred years.
Resumo:
Crossed-arch domes are a singular type of ribbed vaults. Their characteristic feature is that the ribs that form the vault are intertwined, forming polygons or stars, leaving an empty space in the centre. The earliest known vaults of this type are found in the Great Mosque of Córdoba, built ca. 960 a.C. The type spread through Spain, and the north of Africa in the 10th to the 16th Centuries, and was used by Guarini and Vittone in the 17th and 18th Centuries in Italy. However, it was used only in a few buildings. Though the literature about the structural behaviour of ribbed Gothic vaults is extensive, so far no structural analysis of crossed arch domes has been made. The purpose of this work is, first to show the way to attack such an analysis within the frame of Modern Limit Analysis of Masonry Structures (Heyman 1995), and then to apply the approach to study the stability of the dome of the Capilla de Villaviciosa. The work may give some clues to art and architectural historians to understand better the origin and development of Islamic dome architecture.
Resumo:
In the centre of Castilla y León (extensive zone of Spain) still there are some examples of the old rural buildings linked to the economic activities that have been developed in the agrarian field. These are called chozos and casetas, and they have been erected with domed solutions using the autochthonous materi-als: the mud in the region of Tierra de Campos and the stone in the region of Montes Torozos. The influence of traditional construction techniques of both elements has generated a singular typological range rarely seen in the rest of the Península Ibérica. All different types of domes found in this place will be explained from its construction process, adding its structural capacity and energy bioclimatic qualities. -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- En el centro de Castilla y León todavía se mantienen algunos ejemplos de antiguas construcciones rurales vinculadas a las actividades económicas que se han desarrollado en el ámbito agrario. Éstas, conocidas como chozos y casetas, han sido ejecutadas con soluciones cupuliformes empleándose los materiales que más a mano se disponen, siendo el barro más característico en la región de Tierra de Campos y la piedra en la comarca de Montes Torozos. La influencia de las técnicas constructivas tradicionales de ambos elementos ha generado un abanico tipológico singular poco visto en el resto de la península. Los diferentes tipos de cúpulas encontrados se explicarán desde su proceso constructivo, añadiendo su capacidad estructural y sus cualidades bioclimáticas.
Resumo:
From the late seventeenth to early nineteenth centuries, many religious temples have been built in the province of Alicante (south east of Spain) with brick domes as their main characteristic feature. Often, the limited data available about these remarkable constructions make rehabilitation interventions become into real research projects, with a high value for their historic conservation over time. The aim of this paper is to show a detailed refurbishment analysis of a religious temple built in 1778, showing the need of preservation of historic buildings as a part of the architectural heritage by establishing a common pattern of materials, geometry and constructive systems, specifically in their domes. In most cases, there was not an architectural project for the construction, that is why the analysis of any documentary and archival sources available is essential to find different ways to proceed on the use and maintenance of these religious buildings.
Resumo:
Contains history and description of organs built by Friedrich Schulze, David Beck, Josef Wiedemann, and Johann Gottlob Töpfer.
Resumo:
Includes index.