949 resultados para Dodecylbenzene sulfonic acid
Resumo:
Although polyaniline (PANI) has high conductivity and relatively good environmental and thermal stability and is easily synthesized, the intractability of this intrinsically conducting polymer with a melting procedure prevents extensive applications. This work was designed to process PANI with a melting blend method with current thermoplastic polymers. PANI in an emeraldine base form was plasticized and doped with dodecylbenzene sulfonic acid (DBSA) to prepare a conductive complex (PANI-DBSA). PANI-DBSA, low-density polyethylene (LDPE), and an ethylene/vinyl acetate copolymer (EVA) were blended in a twin-rotor mixer. The blending procedure was monitored, including the changes in the temperature, torque moment, and work. As expected, the conductivity of ternary PANI-DBSA/LDPE/EVA was higher by one order of magnitude than that of binary PANI-DBSA/LDPE, and this was attributed to the PANI-DBSA phase being preferentially located in the EVA phase. An investigation of the morphology of the polymer blends with high-resolution optical microscopy indicated that PANI-DBSA formed a conducting network at a high concentration of PANI-DBSA. The thermal and crystalline properties of the polymer blends were measured with differential scanning calorimetry. The mechanical properties were also measured.
Resumo:
Perflurooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) have been used for a variety of applications including fluoropolymer processing, fire-fighting foams and surface treatments since the 1950s. Both PFOS and PFOA are polyfluoroalkyl chemicals (PFCs), man-made compounds that are persistent in the environment and humans; some PFCs have shown adverse effects in laboratory animals. Here we describe the application of a simple one compartment pharmacokinetic model to estimate total intakes of PFOA and PFOS for the general population of urban areas on the east coast of Australia. Key parameters for this model include the elimination rate constants and the volume of distribution within the body. A volume of distribution was calibrated for PFOA to a value of 170ml/kgbw using data from two communities in the United States where the residents' serum concentrations could be assumed to result primarily from a known and characterized source, drinking water contaminated with PFOA by a single fluoropolymer manufacturing facility. For PFOS, a value of 230ml/kgbw was used, based on adjustment of the PFOA value. Applying measured Australian serum data to the model gave mean+/-standard deviation intake estimates of PFOA of 1.6+/-0.3ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003 and 1.3+/-0.2ng/kg bw/day based on samples collected in 2006-2007. Mean intakes of PFOS were 2.7+/-0.5ng/kgbw/day for males and females >12years of age combined based on samples collected in 2002-2003, and 2.4+/-0.5ng/kgbw/day for the 2006-2007 samples. ANOVA analysis was run for PFOA intake and demonstrated significant differences by age group (p=0.03), sex (p=0.001) and date of collection (p<0.001). Estimated intake rates were highest in those aged >60years, higher in males compared to females, and higher in 2002-2003 compared to 2006-2007. The same results were seen for PFOS intake with significant differences by age group (p<0.001), sex (p=0.001) and date of collection (p=0.016).
Resumo:
This article describes the results of the preparation and characterization of self-doped conducting copolymers of aniline and toluidine with m-aminobenzene sulfonic acid. The copolymers have an intrinsic acid group that is capable of doping polyaniline. Spectroscopic, morphological, and electrical conductivity studies have provided insight into the structural and electronic properties of the copolymers. The differences in the properties of polyaniline and polytoluidine due to the sulfonic acid ring substituent on the phenyl ring are discussed. The scanning electron micrographs of the copolymers reveal regions of sharp-edged, needle-shaped structures, whereas the X-ray diffraction patterns show that the copolymers are relatively more crystalline in nature. (C) 2002 Wiley Periodicals, Inc.
Resumo:
A new sulfur-containing guanidino derivative, halichondria sulfonic acid (1) showing anti-HIV-1 activity, and halistanol trisulfate (2) with anti-tumor activity have been isolated from the marine sponge Halichondria rugosa Ridley & Dendy collected in the
Resumo:
The lifetime behavior of a H-2/O-2 proton exchange membrane (PEM) fuel cell with polystyrene sulfonic acid (PSSA) membrane have been investigated in order to give an insight into the degradation mechanism of the PSSA membrane. The distribution of sulfur concentration in the cross section of the PSSA membrane was measured by energy dispersive analysis of X-ray, and the chemical composition of the PSSA membrane was characterized by infrared spectroscopy before and after the lifetime experiment. The degradation mechanism of the PSSA membrane is postulated as: the oxygen reduction at the cathode proceeds through some peroxide intermediates during the fuel cell operation, and these intermediates have strong oxidative ability and may chemically attack the tertiary hydrogen at the a carbon of the PSSA; the degradation of the PSSA membrane mainly takes place at the cathode side of the cell, and the loss of the aromatic rings and the SO3- groups simultaneously occurs from the PSSA membrane. A new kind of the PSSA-Nafion composite membrane, where the Nafion membrane is bonded with the PSSA membrane and located at the cathode of the cell, was designed to prevent oxidation degradation of the PSSA membrane in fuel cells. The performances of fuel cells with PSSA-Nafion101 and PSSA-recast Nafion composite membranes are demonstrated to be stable after 835 h and 240 h, respectively.
Resumo:
The strong polar group, sulfonic acid, has successfully been introduced into ethylene/allylbenzene copolymers without degradation or crosslinking via chlorosulfonation reaction with chlorosulfonic acid as a chlorosulforiating agent in 1, 1,2,2-tetrachloroethane followed by hydrolysis. The degree of sulforiation (DS) can be easily controlled by changing the ratio of chlorosulfonic acid to the pendant phenyls of the copolymer. The microstructure of sulfonated copolymers were unambiguously revealed by H-1 NMR and H-1-H-1 COSY spectral analyses, which indicates that all the sulforiation reactions exclusively took place at the para-position of the aromatic rings.
Resumo:
An electrochemically stable monolayer of tris(2,2'-bipyridyl)ruthenium(II) was obtained for the first time. It was based on the electrostatic attachment of Ru(bpy)(3)(2+) to the benzene sulfonic acid monolayer film, which was covalently bound onto glassy carbon electrode by the electrochemical reduction of diazobenzene sulfonic acid. The surface-confined Ru(bpy)(3)(2+) underwent reversible surface process, and reacted with the coreactant, tripropylamine, to produce electrochemiluminescence. In view of the stability of the electrode, the results strongly suggested that light was emitted from the surface-confined Ru(bpy)(3)(2+), not from the detached Ru(bpy)(3)(2+). The Ru(bpy)(3)(2+) modified electrode was used to the determination of tripropylamine. It showed good linearity in the concentration range from 5 muM to 1 muM with a detection limit of 1 muM (S/N = 4). The good stability of the Ru(bpy)(3)(2+) modified electrode also showed that the benzene sulfonic acid monolayer film prepared can be served as an excellent support to construct multilayers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The p-toluene sulfonic acid (MA) in phenol matrix was separated and determined by capillary electrophoresis with ultraviolet detector. the effect of the concentration and pH of the buffer on separation was investigated. Cinnamic acid has been chosen as the internal standard from four compounds, the calibration curves of PTSA in 50 mg/L phenol matrix were obtained with and without the internal standard. The linear range was from 1.25 to 12.5 mg/L and the correlation coefficient was 0.9999 for both curves. The limit of detection of PISA was 0.75 mg/L at 3 times of SIN. Finally, the concentration of PTSA in four synthesized samples was determined with method of standard additions, and the effect of matrix was discussed. The values of MA in these samples were 1.01, 0.94, 1.56 and 0.00 mg/L respectively.
Resumo:
The synthesis of new chiral smectic A (S-A) side-chain liquid crystalline polysiloxanes (LCPs) and ionomers (LCIs) containing 4-allyloxy-benzoyl-4-(S-2-ethylhexanoyl) p-benzenediol his ate (ABB) as mesogenic units and 4-[[4-(2-propenyloxy)phenyl] azo]benzensulfonic acid (AABS) as nonmesogenic units is presented. The chemical structures of the monomers and polymers are confirmed by FTIR spectroscopy or H-1-NMR. Differential scanning calorimetry (DSC), optical polarizing microscopy, and X-ray diffraction measurements reveal that all the polymers P-I-P-IV and ionomers P-V-P-VI exhibit S-A texture. The results seem to demonstrate that the tendency toward the S-A-phase region increases with increasing sulfonic acid concentration, and the thermal stability of the S-A phase is determined by the flexibility of the polymer backbones and the interactions of sulfonic acid groups. (C) 2001 John Wiley & Sons, Inc.
Resumo:
Grafting of acrylamido tertiary butyl sulfonic acid (ATBS) onto ethylene-polypropylene copolymer (EPM) was carried out by using a reactive processing method. The grafting copolymer was characterized by means of WAXD, FT-IR, ESCA, and DSC. Improved thermal stability was observed for graft copolymer. Effects of the monomer and the initiator concentrations, reactive temperature, and time on grafting degree were investigated. (C) 1997 John Wiley & Sons, Inc.