916 resultados para Discrete Mathematics and Combinatorics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reiner, Shaw and van Willigenburg showed that if two skew Schur functions sA and sB are equal, then the skew shapes $A$ and $B$ must have the same "row overlap partitions." Here we show that these row overlap equalities are also implied by a much weaker condition than Schur equality: that sA and sB have the same support when expanded in the fundamental quasisymmetric basis F. Surprisingly, there is significant evidence supporting a conjecture that the converse is also true. In fact, we work in terms of inequalities, showing that if the F-support of sA contains that of sB, then the row overlap partitions of A are dominated by those of B, and again conjecture that the converse also holds. Our evidence in favor of these conjectures includes their consistency with a complete determination of all F-support containment relations for F-multiplicity-free skew Schur functions. We conclude with a consideration of how some other quasisymmetric bases fit into our framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to Peirce one of the most important philosophical problems is continuity. Consequently, he set forth an innovative and peculiar approach in order to elucidate at once its mathematical and metaphysical challenges through proper non-classical logical reasoning. I will restrain my argument to the definition of the different types of discrete collections according to Peirce, with a special regard to the phenomenon called premonition of continuity (Peirce, 1976, Vol. 3, p. 87, c. 1897). © 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work is dedicated to the learning discrete mathematics at Bulgarian school. A review of syllabuses and standards has been made. A project of learning discrete mathematics elements from first to twelve class is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A planar k-restricted structure is a simple graph whose blocks are planar and each has at most k vertices. Planar k-restricted structures are used by approximation algorithms for Maximum Weight Planar Subgraph, which motivates this work. The planar k-restricted ratio is the infimum, over simple planar graphs H, of the ratio of the number of edges in a maximum k-restricted structure subgraph of H to the number edges of H. We prove that, as k tends to infinity, the planar k-restricted ratio tends to 1/2. The same result holds for the weighted version. Our results are based on analyzing the analogous ratios for outerplanar and weighted outerplanar graphs. Here both ratios tend to 1 as k goes to infinity, and we provide good estimates of the rates of convergence, showing that they differ in the weighted from the unweighted case.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the hustle and bustle of daily life, how often do we stop to pay attention to the tiny details around us, some of them right beneath our feet? Such is the case of interesting decorative patterns that can be found in squares and sidewalks beautified by the traditional Portuguese pavement. Its most common colors are the black and the white of the basalt and the limestone used; the result is a large variety and richness in patterns. No doubt, it is worth devoting some of our time enjoying the lovely Portuguese pavement, a true worldwide attraction. The interesting patterns found on the Azorean handicrafts are as fascinating and substantial from the cultural point of view. Patterns existing in the sidewalks and crafts can be studied from the mathematical point of view, thus allowing a thorough and rigorous cataloguing of such heritage. The mathematical classification is based on the concept of symmetry, a unifying principle of geometry. Symmetry is a unique tool for helping us relate things that at first glance may appear to have no common ground at all. By interlacing different fields of endeavor, the mathematical approach to sidewalks and crafts is particularly interesting, and an excellent source of inspiration for the development of highly motivated recreational activities. This text is an invitation to visit the nine islands of the Azores and to identify a wide range of patterns, namely rosettes and friezes, by getting to know different arts and crafts and sidewalks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider implicit signatures over finite semigroups determined by sets of pseudonatural numbers. We prove that, under relatively simple hypotheses on a pseudovariety V of semigroups, the finitely generated free algebra for the largest such signature is closed under taking factors within the free pro-V semigroup on the same set of generators. Furthermore, we show that the natural analogue of the Pin-Reutenauer descriptive procedure for the closure of a rational language in the free group with respect to the profinite topology holds for the pseudovariety of all finite semigroups. As an application, we establish that a pseudovariety enjoys this property if and only if it is full.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The first generation models of currency crises have often been criticized because they predict that, in the absence of very large triggering shocks, currency attacks should be predictable and lead to small devaluations. This paper shows that these features of first generation models are not robust to the inclusion of private information. In particular, this paper analyzes a generalization of the Krugman-Flood-Garber (KFG) model, which relaxes the assumption that all consumers are perfectly informed about the level of fundamentals. In this environment, the KFG equilibrium of zero devaluation is only one of many possible equilibria. In all the other equilibria, the lack of perfect information delays the attack on the currency past the point at which the shadow exchange rate equals the peg, giving rise to unpredictable and discrete devaluations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this article we try to look at the learning of mathematics through games in the first years of schooling. The use of game resources in the class should not be carried out in a uniquely intuitive way but rather in a manner that contains some preliminary reflections such as, what do we understand by games? Why use games as a resource in the Mathematics classroom? And what does its use imply?

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Programming and mathematics are core areas of computer science (CS) and consequently also important parts of CS education. Introductory instruction in these two topics is, however, not without problems. Studies show that CS students find programming difficult to learn and that teaching mathematical topics to CS novices is challenging. One reason for the latter is the disconnection between mathematics and programming found in many CS curricula, which results in students not seeing the relevance of the subject for their studies. In addition, reports indicate that students' mathematical capability and maturity levels are dropping. The challenges faced when teaching mathematics and programming at CS departments can also be traced back to gaps in students' prior education. In Finland the high school curriculum does not include CS as a subject; instead, focus is on learning to use the computer and its applications as tools. Similarly, many of the mathematics courses emphasize application of formulas, while logic, formalisms and proofs, which are important in CS, are avoided. Consequently, high school graduates are not well prepared for studies in CS. Motivated by these challenges, the goal of the present work is to describe new approaches to teaching mathematics and programming aimed at addressing these issues: Structured derivations is a logic-based approach to teaching mathematics, where formalisms and justifications are made explicit. The aim is to help students become better at communicating their reasoning using mathematical language and logical notation at the same time as they become more confident with formalisms. The Python programming language was originally designed with education in mind, and has a simple syntax compared to many other popular languages. The aim of using it in instruction is to address algorithms and their implementation in a way that allows focus to be put on learning algorithmic thinking and programming instead of on learning a complex syntax. Invariant based programming is a diagrammatic approach to developing programs that are correct by construction. The approach is based on elementary propositional and predicate logic, and makes explicit the underlying mathematical foundations of programming. The aim is also to show how mathematics in general, and logic in particular, can be used to create better programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is a secondary data analysis of the Trends in Mathematics and Science Study 2003 (TIMSS) to determine if there is a gender bias, unbalanced number of items suited to the cognitive skill of one gender, and to compare performance by location. Results of the Grade 8, math portion of the test were examined. Items were coded as verbal, spatial, verbal /spatial or neither and as conventional or unconventional. A Kruskal- Wallis was completed for each category, comparing performance of students from Ontario, Quebec, and Singapore. A Factor Analysis was completed to determine if there were item categories with similar characteristics. Gender differences favouring males were found in the verbal conventional category for Canadian students and in the spatial conventional category for students in Quebec. The greatest differences were by location, as students in Singapore outperformed students from Canada in all areas except for the spatial unconventional category. Finally, whether an item is conventional or unconventional is more important than whether the item is verbal or spatial. Results show the importance of fair assessment for the genders in both the classroom and on standardized tests.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study was to determine the extent to which gender differences exist in student attitudes toward mathematics and in their performance in mathematics at the Grade Seven and Eight level. The study also questioned how parents influence the attitudes of this grade level of male and female students toward mathematics. Historically, the literature has demonstrated gender differences in the attitudes of students toward mathematics, and in parental support for classroom performance in mathematics. This study was an attempt to examine these differences at one senior public school in the Peel Board of Education. One hundred three Grade Seven and Eight students at a middle school in the Peel Board of Education volunteered to take part in a survey that examined their attitudes toward mathematics, their perceptions of their parents' attitudes toward mathematics and support for good performance in the mathematics classroom, parental expectations for education and future career choices. Gender differences related to performance levels in the mathematics classroom were examined using Pearson contingency analyses. Items from the survey that showed significant differences involved confidence in mathematics and confidence in writing mathematics tests, as well as a belief in the ability to work on mathematics problems. Male students in both the high and low performance groups demonstrated higher levels of confidence than the females in those groups. Female students, however, indicated interest in careers that would require training and knowledge of higher mathematics. Some of the reasons given to explain the gender differences in confidence levels included socialization pressures on females, peer acceptance, and attribution of success. Perceived parental support showed no significant differences across gender groups or performance levels. Possible explanations dealt with the family structure of the participants in the study. Studies that, in the past, have demonstrated gender differences in confidence levels were supported by this study, and discussed in detail. Studies that reported on differences in parental support for student performance, based on the gender of the parent, were not confirmed by this study, and reasons for this were also discussed. The implications for the classroom include: 1) build on the female students' strengths that will allow them to enjoy their experiences in mathematics; 2) stop using the boys as a comparison group; and 3) make students more aware of the need to continue studying mathematics to ensure a wider choice of future careers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research studioo the effect of integrated instruction in mathematics and~ science on student achievement in and attitude towards both mathematics and science. A group of grade 9 academic students received instruction in both science and mathematics in an integrated program specifically developed for the purposes of the research. This group was compared to a control group that had received science and mathematics instruction in a traditional, nonintegrated program. The findings showed that in all measures of attitude, there was no significant difference between the students who participated in the integrated science and mathematics program and those who participated in a traditional science and mathematics program. The findings also revealed that integration did improve achievement on some of the measures used. The performance on mathematics open-ended problem-solving tasks improved after participation in the integrated program, suggesting that the integrated students were better able to apply their understanding of mathematics in a real-life context. The performance on the final science exam was also improved for the integrated group. Improvement was not noted on the other measures, which included EQAO scores and laboratory practical tasks. These results raise the issue of the suitability of the instruments used to gauge both achievement and attitude. The accuracy and suitability of traditional measures of achievement are considered. It is argued that they should not necessarily be used as the measure of the value of integrated instruction in a science and mathematics classroom.