907 resultados para Digitized Objects
Resumo:
ZooScan with ZooProcess and Plankton Identifier (PkID) software is an integrated analysis system for acquisition and classification of digital zooplankton images from preserved zooplankton samples. Zooplankton samples are digitized by the ZooScan and processed by ZooProcess and PkID in order to detect, enumerate, measure and classify the digitized objects. Here we present a semi-automatic approach that entails automated classification of images followed by manual validation, which allows rapid and accurate classification of zooplankton and abiotic objects. We demonstrate this approach with a biweekly zooplankton time series from the Bay of Villefranche-sur-mer, France. The classification approach proposed here provides a practical compromise between a fully automatic method with varying degrees of bias and a manual but accurate classification of zooplankton. We also evaluate the appropriate number of images to include in digital learning sets and compare the accuracy of six classification algorithms. We evaluate the accuracy of the ZooScan for automated measurements of body size and present relationships between machine measures of size and C and N content of selected zooplankton taxa. We demonstrate that the ZooScan system can produce useful measures of zooplankton abundance, biomass and size spectra, for a variety of ecological studies.
Resumo:
This article briefly reviews the software developments for digital presentation and preservation of Bulgarian folklore treasure created within the project “Knowledge Technologies for Creation of Digital Presentation and Significant Repositories of Folklore Heritage” by teams of the Institute of Mathematics and Informatics.
Resumo:
This report presents the project outcomes for digital presentation of historical artefacts from the region of Plovdiv, related to the Balkan War (1912-1913). The selected collections include digitized periodicals, postcards, photographs, museum objects and paintings by Bulgarian artists. Problems related to the digitization, creation, storage and visualization of digital objects from the funds of these cultural institutions are also discussed. The content of this digital library is expected to be completed with other collections at cultural institutions in Plovdiv. The idea is as a next step to integrate the project with the other digital libraries. The project website „Digital library of collections from cultural institutions in Plovdiv” is also presented here - http://plovdivartefacts.com/ (Figure 1).
Resumo:
Augmented reality is the latest among information technologies in modern electronics industry. The essence is in the addition of advanced computer graphics in real and/or digitized images. This paper gives a brief analysis of the concept and the approaches to implementing augmented reality for an expanded presentation of a digitized object of national cultural and/or scientific heritage. ACM Computing Classification System (1998): H.5.1, H.5.3, I.3.7.
Resumo:
The most significant radiation field nonuniformity is the well-known Heel effect. This nonuniform beam effect has a negative influence on the results of computer-aided diagnosis of mammograms, which is frequently used for early cancer detection. This paper presents a method to correct all pixels in the mammography image according to the excess or lack on radiation to which these have been submitted as a result of the this effect. The current simulation method calculates the intensities at all points of the image plane. In the simulated image, the percentage of radiation received by all the points takes the center of the field as reference. In the digitized mammography, the percentages of the optical density of all the pixels of the analyzed image are also calculated. The Heel effect causes a Gaussian distribution around the anode-cathode axis and a logarithmic distribution parallel to this axis. Those characteristic distributions are used to determine the center of the radiation field as well as the cathode-anode axis, allowing for the automatic determination of the correlation between these two sets of data. The measurements obtained with our proposed method differs on average by 2.49 mm in the direction perpendicular to the anode-cathode axis and 2.02 mm parallel to the anode-cathode axis of commercial equipment. The method eliminates around 94% of the Heel effect in the radiological image and the objects will reflect their x-ray absorption. To evaluate this method, experimental data was taken from known objects, but could also be done with clinical and digital images.
Resumo:
n.s. no.4(1981)
Resumo:
Catalogue: p. [39]-[120].
Resumo:
In portfolio.
Resumo:
Mimeographed.
Resumo:
Mode of access: Internet.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Federal Highway Administration, Washington, D.C.
Resumo:
Includes bibliographical references and indexes.
Resumo:
Mode of access: Internet.
Resumo:
Dedication signed: Invernessicus.