990 resultados para Digital controllers
Resumo:
This paper presents the new trend of FPGA (Field programmable Gate Array) based digital platform for the control of power electronic systems. There is a rising interest in using digital controllers in power electronic applications as they provide many advantages over their analog counterparts. A board comprising of Cyclone device EP1C12Q240C8 of Altera is used for developing this platform. The details of this board are presented. This developed platform can be used for the controller applications such as UPS, Induction Motor drives and front end converters. A real time simulation of a system can also be done. An open-loop induction motor drive has been implemented using this board and experimental results are presented.
Resumo:
This work proposes a method to objectively determine the most suitable analogue redesign method for forward type converters under digital voltage mode control. Particular emphasis is placed on determining the method which allows the highest phase margin at the particular switching and crossover frequencies chosen by the designer. It is shown that at high crossover frequencies with respect to switching frequency, controllers designed using backward integration have the largest phase margin; whereas at low crossover frequencies with respect to switching frequency, controllers designed using bilinear integration have the largest phase margins. An accurate model of the power stage is used for simulation, and experimental results from a Buck converter are collected. The performance of the digital controllers is compared to that of the equivalent analogue controller both in simulation and experiment. Excellent correlation between the simulation and experimental results is presented. This work will allow designers to confidently choose the analogue redesign method which yields the greater phase margin for their application.
Resumo:
This article proposes a systematic approach to determine the most suitable analogue redesign method to be used for forward-type converters under digital voltage mode control. The focus of the method is to achieve the highest phase margin at the particular switching and crossover frequencies chosen by the designer. It is shown that at high crossover frequencies with respect to switching frequency, controllers designed using backward integration have the largest phase margin; whereas at low crossover frequencies with respect to switching frequency, controllers designed using bilinear integration with pre-warping have the largest phase margins. An algorithm has been developed to determine the frequency of the crossing point where the recommended discretisation method changes. An accurate model of the power stage is used for simulation and experimental results from a Buck converter are collected. The performance of the digital controllers is compared to that of the equivalent analogue controller both in simulation and experiment. Excellent closeness between the simulation and experimental results is presented. This work provides a concrete example to allow academics and engineers to systematically choose a discretisation method.
Resumo:
Analisa uma proposta de um controlador digital para o regulador de velocidade da Usina Hidroelétrica de Curuá-Una, utilizando duas estratégias de projeto, a estratégia indireta com o projeto do controlador sendo feito no plano contínuo e depois discretizado e a estratégia direta, em que o controlador é projetado inteiramente no plano discreto. O conhecimento gerado no simulador é de grande importância, pois é uma das grandes ferramentas para avaliar o comportamento dos controladores digitais propostos, em ambiente seguro. O estudo dos controladores também permite uma substituição de equipamentos antigos, com produção descontinuada, por equipamentos novos que permitem a confecção de controladores modernos, digitais e inteligentes, que proporcionam uma substituição de técnicas antigas de controle por estratégias avançadas de controle, maximizando o rendimento do sistema em condições adversas de operação. O trabalho levanta as diferenças, vantagens e desvantagens de cada controlador, com o objetivo de auxiliar na escolha do controlador mais adequado para projetos de controladores avançados: tipo um controle adaptativo, controle fuzzy ou controle neural. As dificuldades de projeto e os resultados das simulações foram os principais indicadores na avaliações dos dois RV digitais projetados. De uma forma geral o RV digital direto apresentou melhor desempenho, estabilidade e menor esforço computacional, entretanto, o RV digital indireto mostrou desempenho similar, menor degradação devido às não linearidades e ao menor esforço de projeto.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.
Resumo:
This paper deals with results of a research and development (R&D) project in cooperation with Electric Power Distribution Company in São Paulo (Brazil) regarding the development and experimental analysis of a new concept of power drive system suitable for application in traction systems of electrical vehicles pulled by electrical motors, which can be powered by urban DC or AC distribution networks. The proposed front-end structure is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode as AC-DC converter, or as DC-DC converter, in order to provide the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards resulting in significant improvements for the trolleybuses systems efficiency and for the urban distribution network costs. Considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, two digital control strategies were evaluated. The digital controller has been implemented using a low cost FPGA (XC3S200) and developed totally using a hardware description language VHDL and fixed point arithmetic. Experimental results from a 15 kW low power scale prototype operating in DC and AC conditions are presented, in order to verify the feasibility and performance of the proposed system. © 2009 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Neste trabalho serão apresentados os resultados da avaliação experimental de uma metodologia de controle digital preditivo auto-ajustavel aplicada ao controle de tensão de um sistema de geração de energia de escala reduzida. Um estimador recursivo baseado no conhecido método de mínimos quadrados é utilizado na etapa de identificação do controlador preditivo proposto. A etapa de cálculo da lei de controle é realizada com o algoritmo Generalized Predictive Controller (GPC). A avaliação experimental foi realizada com testes de resposta ao degrau e rastreamento aplicados em diferentes condições operacionais do sistema de potência estudado. Para fins de comparação, também serão apresentados os resultados da avaliação de um controlador auto-ajustável que utiliza o método de alocação de pólos para a síntese do sinal de controle e três controladores digitais com parâmetros fixos.
Resumo:
This work reports the developnent of a mathenatical model and distributed, multi variable computer-control for a pilot plant double-effect climbing-film evaporator. A distributed-parameter model of the plant has been developed and the time-domain model transformed into the Laplace domain. The model has been further transformed into an integral domain conforming to an algebraic ring of polynomials, to eliminate the transcendental terms which arise in the Laplace domain due to the distributed nature of the plant model. This has made possible the application of linear control theories to a set of linear-partial differential equations. The models obtained have well tracked the experimental results of the plant. A distributed-computer network has been interfaced with the plant to implement digital controllers in a hierarchical structure. A modern rnultivariable Wiener-Hopf controller has been applled to the plant model. The application has revealed a limitation condition that the plant matrix should be positive-definite along the infinite frequency axis. A new multi variable control theory has emerged fram this study, which avoids the above limitation. The controller has the structure of the modern Wiener-Hopf controller, but with a unique feature enabling a designer to specify the closed-loop poles in advance and to shape the sensitivity matrix as required. In this way, the method treats directly the interaction problems found in the chemical processes with good tracking and regulation performances. Though the ability of the analytical design methods to determine once and for all whether a given set of specifications can be met is one of its chief advantages over the conventional trial-and-error design procedures. However, one disadvantage that offsets to some degree the enormous advantages is the relatively complicated algebra that must be employed in working out all but the simplest problem. Mathematical algorithms and computer software have been developed to treat some of the mathematical operations defined over the integral domain, such as matrix fraction description, spectral factorization, the Bezout identity, and the general manipulation of polynomial matrices. Hence, the design problems of Wiener-Hopf type of controllers and other similar algebraic design methods can be easily solved.
Resumo:
This paper presents a novel real-time power-device temperature estimation method that monitors the power MOSFET's junction temperature shift arising from thermal aging effects and incorporates the updated electrothermal models of power modules into digital controllers. Currently, the real-time estimator is emerging as an important tool for active control of device junction temperature as well as online health monitoring for power electronic systems, but its thermal model fails to address the device's ongoing degradation. Because of a mismatch of coefficients of thermal expansion between layers of power devices, repetitive thermal cycling will cause cracks, voids, and even delamination within the device components, particularly in the solder and thermal grease layers. Consequently, the thermal resistance of power devices will increase, making it possible to use thermal resistance (and junction temperature) as key indicators for condition monitoring and control purposes. In this paper, the predicted device temperature via threshold voltage measurements is compared with the real-time estimated ones, and the difference is attributed to the aging of the device. The thermal models in digital controllers are frequently updated to correct the shift caused by thermal aging effects. Experimental results on three power MOSFETs confirm that the proposed methodologies are effective to incorporate the thermal aging effects in the power-device temperature estimator with good accuracy. The developed adaptive technologies can be applied to other power devices such as IGBTs and SiC MOSFETs, and have significant economic implications.
Resumo:
In the last years, digital controllers became a very interesting alternative (low costs and higher accuracy) to the analogue or to hydrodynamic traditional controllers in water supply canal automation, in order to match water supply to water demands. This kind of hydraulic systems needs particular research for control applications because they are big scale systems, open and characterized by big delays and great inertia. This paper presents several digital control modes tested in an experimental canal that will be used as a research platform on the automatic canal control domain. The canal operation and their control modes selection are supervised by a SCADA system developed and configured for this particular canal.