975 resultados para Di-ureasils
Resumo:
Organic-inorganic hybrids, named di-ureasils and described by polyether-based chains grafted to both ends to a siliceous backbone through urea cross linkages, were used as hosts for incorporation of the well-known coordination complex of trivalent europium (Eu3+) ions described by the formula [Eu(TTA)(3)(H2O)(2)] (where TTA stands for thenoyltrifluoroacetone). By comparing with Eu3+-doped di-ureasil without complex form the new materials prepared here enhanced the quantum efficiency for photoemission of Eu3+ ions. The enhancement can be explained by the coordination ability of the organic counterpart of the host structure which is strong enough to displace water molecules in [Eu(TTA)(3)(H2O)(2)] from the rare earth neighbourhood after the incorporation process. High intensity of Eu3+ emission was observed with a low non-radiative decay rate under ultraviolet excitation. The quantum efficiency calculated from the decay of D-5(0) emission was 74%, which in the same range of values previously obtained for the most efficient Eu3+ coordination compounds reported in literature. Luminescence, X-ray absorption and infrared absorption results considered together leads to a picture where the first coordination shell of Eu3+ is composed of the 6 oxygen atoms of the 3 beta-diketonate ligands and 2 ether-like oxygen atoms of the host. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Di-urea cross-linked poly(oxyethylene)/siloxane hybrids, synthesized by the sol-gel process and containing a wide concentration range of potassium triflate, KCF3SO3, have been analyzed by x-ray diffraction and differential scanning calorimetry. The pseudo-phase diagram proposed has been taken into account in the interpretation of the complex impedance measurements. The xerogels prepared are obtained as transparent, thin monoliths. At room temperature the highest conductivity found was 2 × 10-6 Ω-1 cm-1.
Resumo:
The modelling of the local structure of sol-gel derived Eu3+-based organic/inorganic hybrids is reported, based on Small-Angle X-ray Scattering (SAXS), photoluminescence and mid-infrared spectroscopy. The hybrid matrix of these organically modified silicates, classed as di-ureasils and termed U(2000) and U(600), is formed by poly( oxyethylene) (POE) chains of variable length grafted to siloxane domains by means of urea cross-linkages. Europium triflate, Eu(CF3SO3)(3), was incorporated in the two di-ureasil matrices with compositions 400 greater than or equal ton greater than or equal to 10, n is the molar ratio of ether oxygens per Eu3+. The SAXS data for undoped hybrids (n=infinity) show the presence of a well-defined peak attributed to the existence of a liquid-like spatial correlation of siloxane rich domains embedded in the polymer matrix and located at the ends of the organic segments. The obtained siloxane particle gyration radius Rg(1) is around 5 Angstrom (error within 10%), whereas the interparticle distance d is 25 +/-2 Angstrom and 40 +/-2 Angstrom, for U(600) and U(2000), respectively. For the Eu3+-based nanocomposites the formation of a two-level hierarchical local structure is discerned. The primary level is constituted by strongly spatially correlated siloxane particles of gyration radius Rg(1) (4-6 and 3-8 Angstrom, errors within 5%, for U(600())n Eu(CF3SO3)(3), 200 greater than or equal ton greater than or equal to 40, and U(2000)(n)Eu(CF3SO3)(3), 400 greater than or equal ton greater than or equal to 40, respectively) forming large clusters of gyration radius Rg(2) (approximate to 75 +/- 10 Angstrom). The local coordination of Eu3+ in both di-ureasil series is described combining the SAXS, photoluminescence and mid-infrared results. In the di-ureasils containing long polymer chains, U(2000)(n)Eu(CF3SO3)(3), the cations interact exclusively with the carbonyl oxygens atoms of the urea bridges at the siloxane-POE interface. In the hybrids containing shorter chains, U(600)(n)Eu(CF3SO3)(3) with n ranging from 200 to 60, the Eu3+ ions interact solely with the ether-type oxygens of the polymer chains. Nevertheless, in this latter family of hybrids a distinct Eu3+ local site environment involving the urea cross-linkages is detected when the europium content is increased up to n=40.
Resumo:
Hybrid organic - inorganic nanocomposites doped with Fe-II and Fe-III ions and exhibiting interesting magnetic properties have been obtained by the sol - gel process. The hybrid matrix of these ormosils ( organically modified silicates), classed as di-ureasils and termed U( 2000), is composed of poly( oxyethylene) chains of variable length grafted to siloxane groups by means of urea crosslinkages. Iron perchlorate and iron nitrate were incorporated in the diureasil matrices, leading to compositions within the range 80 greater than or equal to n greater than or equal to 10, n being the molar ratio of ether-type O atoms per cation. The structure of the doped diureasils was investigated by small-angle X-ray scattering (SAXS). For Fe-II-doped samples, SAXS results suggest the existence of a two-level hierarchical structure. The primary level is composed of spatially correlated siloxane clusters embedded in the polymeric matrix and the secondary, coarser level consists of domains where the siloxane clusters are segregated. The structure of Fe-III-doped hybrids is different, revealing the existence of iron oxide based nanoclusters, identified as ferrihydrite by wide-angle X-ray diffraction, dispersed in the hybrid matrix. The magnetic susceptibility of these materials was determined by zero-field-cooling and field-cooling procedures as functions of both temperature and field. The different magnetic features between Fe-II- and Fe-III-doped samples are consistent with the structural differences revealed by SAXS. While Fe-II-doped composites exhibit a paramagnetic Curie-type behaviour, hybrids containing Fe-III ions show thermal and field irreversibilities.
Resumo:
Nd3+-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly (oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF3SO3)(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), Si-29 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.
Resumo:
Infrared and photoluminescence spectroscopies have been used to investigate the local environment of the Eu3+ ions in luminescent sol-gel derived materials-di-ureasils-based on a hybrid framework represented by U(600). This host is composed of a siliceous backbone grafted, through urea cross-links, to both ends of polymer segments incorporating 8.5 oxyethylene repeat units. The active centers have been introduced as europium perchlorate, Eu(ClO4)3. Samples with compositions n = 232, 62, 23, 12, and 6 (where n denotes the ratio of (OCH2CH2) moieties per lanthanide ion) have been examined. The combination of the information retrieved from the analysis of characteristic bands of the FTIR spectra-the perchlorate and the Amide I/Amide II features-with that obtained from the photoluminescence data demonstrates that at compositions n = 232 and 62 the anions are free, whereas the Eu3+ ions are complexed by the heteroatoms of the polyether chains. At higher salt concentration, the cations are bonded, not only to the ClO4 - ions, but also to the ether oxygen atoms of the organic segments and to the carbonyl oxygen atoms of the urea linkages. The dual behavior of U(600) with respect to cation coordination has been attributed to the presence in this nanohybrid of strong hydrogen-bonded urea-urea structures, which, at low salt content, cannot be disrupted, thus inhibiting the formation of Eu3+-O=C(urea) contacts and promoting the interaction between the lanthanide ions and the (OCH2CH2) moieties. The present work substantiates the claim that the activation of the coordinating sites of the di-ureasil framework can be tuned by varying either the guest salt concentration at constant chain length or the length of the.organic segments at constant salt concentration. This relevant property opens challenging new prospects in the fields of application of this class of hybrids. © 2001 American Chemical Society.
Resumo:
The photoluminescence features and the energy transfer processes of Nd3+-based siloxanepoly(oxyethylene) hybrids are reported. The host matrix of these materials, classed as di-ureasils, is formed by a siloxane backbone covalently bonded to polyether chains of two molecular weights by means of urea cross-links. The room-temperature photoluminescence spectra of these xerogels show a wide broad purple-blue-green band (350-570 nm), associated with the emitting centres of the di-ureasil host, and the typical near infrared emission of Nd3+ (700-1400 nm), assigned to the 4F3/2 → 4I9/2,11/2,13/2 transitions. Self-absorptions in the visible range, resonant with intra-4f3 transitions, indicate the existence of an energy conversion mechanism of visible di-ureasil emission into near infrared Nd3+ luminescence. The existence of energy transfer between the di-ureasil's emitting centres and the Nd3+ ions is demonstrated calculating the lifetimes of these emitting centres. The efficiency of that energy transfer changes both with the polymer molecular weight and the Nd3+ concentration.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Planar waveguides with controlled refractive index were produced using thin films of sol-gel derived organic-inorganic hybrids, so called di-ureasils. Spectroscopic ellipsometry was used to characterize the films thickness and refractive index. UV-laser direct-writing method was used to produce Y-splitter structures with coupling ratio of 50% without the need of photoinitiators.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the title compound, C17H14N2O6, the conformation about the C=C double bond [1.345 (2) Å] is E, with the ketone moiety almost coplanar [C-C-C-C torsion angle = 9.5 (2)°] along with the phenyl ring [C-C-C-C = 5.9 (2)°]. The aromatic rings are almost perpendicular to each other [dihedral angle = 86.66 (7)°]. The 4-nitro moiety is approximately coplanar with the benzene ring to which it is attached [O-N-C-C = 4.2 (2)°], whereas the one in the ortho position is twisted [O-N-C-C = 138.28 (13)°]. The mol-ecules associate via C-H⋯O inter-actions, involving both O atoms from the 2-nitro group, to form a helical supra-molecular chain along [010]. Nitro-nitro N⋯O inter-actions [2.8461 (19) Å] connect the chains into layers that stack along [001].
Resumo:
Both high-fat diet and exposure to endocrine-disrupting chemicals have been implicated in susceptibility to pathological prostate lesions, but the consequences of combining the two have not yet been examined. We evaluated the effects of gestational and postnatal exposure to a high-fat diet (20% fat) and low doses of di-n-butyl phthalate (DBP; 5mg/kg/day), individually or in combination, on the tissue response and incidence of pathological lesions in the ventral prostate of adult gerbils. Continuous intake of a high-fat diet caused dyslipidemia, hypertrophy, and promoted the development of inflammatory, premalignant and malignant prostate lesions, even in the absence of obesity. Life-time DBP exposure was obesogenic and dyslipidemic and increased the incidence of premalignant prostate lesions. Combined exposure to DBP and a high-fat diet also caused prostate hypertrophy, but the effects were less severe than those of individual treatments; combined exposure neither induced an inflammatory response nor altered serum lipid content.
Resumo:
We report first results from an analysis based on a new multi-hadron correlation technique, exploring jet-medium interactions and di-jet surface emission bias at the BNL Relativistic Heavy Ion Collider (RHIC). Pairs of back-to-back high-transverse-momentum hadrons are used for triggers to study associated hadron distributions. In contrast with two-and three-particle correlations with a single trigger with similar kinematic selections, the associated hadron distribution of both trigger sides reveals no modification in either relative pseudorapidity Delta eta or relative azimuthal angle Delta phi from d + Au to central Au + Au collisions. We determine associated hadron yields and spectra as well as production rates for such correlated back-to-back triggers to gain additional insights on medium properties.
Resumo:
Yields, correlation shapes, and mean transverse momenta p(T) of charged particles associated with intermediate-to high-p(T) trigger particles (2.5 < p(T) < 10 GeV/c) in d + Au and Au + Au collisions at root s(NN) = 200 GeV are presented. For associated particles at higher p(T) greater than or similar to 2.5 GeV/c, narrow correlation peaks are seen in d + Au and Au + Au, indicating that the main production mechanism is jet fragmentation. At lower associated particle pT < 2 GeV/c, a large enhancement of the near- (Delta phi similar to 0) and away-side (Delta phi similar to pi) associated yields is found, together with a strong broadening of the away-side azimuthal distributions in Au + Au collisions compared to d + Au measurements, suggesting that other particle production mechanisms play a role. This is further supported by the observed significant softening of the away-side associated particle yield distribution at Delta phi similar to pi in central Au + Au collisions.
Resumo:
Aiming at contributing with the search for neuroactive substances from natural sources, we report for the first time antinociceptive and anticonvulsant effects of some Lychnophora species. We verify the protective effects of polar extracts (600 mg/kg, intraperitoneally), and methanolic fractions of L. staavioides and L. rupestris (100 mg/kg, intraperitoneally) in pentylenetetrazole-induced seizures on mice. Previously, a screening was accomplished, evaluating the antinociceptive central activity (hot plate test), with different extracts of L. rupestris, L. staavioides and L. diamantinana. It was possible to select the possible extracts of Lychnophora with central nervous system activity. Some of the active extracts were submitted to fractionation and purification process and the methanolic fractions of L. rupestris (stem) and L. staavioides (stem), with anticonvulsant properties (100 mg/kg, intraperitoneally), yielded 4,5-di-O-[E]-caffeoylquinic acid. This substance was injected intraperitoneally in mice and showed anticonvulsant effect against pentylenetetrazole-induced seizures at doses of 25 and 50 mg/kg. It has often been shown that seizures induced by pentylenetetrazole are involved in inhibition and/or attenuation of GABAergic neurotransmission. However, other systems of the central nervous system such as adenosinergic and glutamatergic could be involved in the caffeoylquinic acid effects. Further studies should be conducted to verify that the target receptor could be participating in this anticonvulsant property. Although other investigations have reported a series of biological activities from Lychnophora species, this is the first report of central analgesic and anticonvulsant activity in species of this genus.