990 resultados para Derivative spectroscopy
Resumo:
Derivative spectroscopy has been utilised for the determination of amphotericin in various biological matrices including plasma, serum, urine and brain tissue. Whilst these methods have all been shown to be suitable for the determination of the drug in these matrices it has been reported that the application fails in the case of highly icteric plasma, this being due to the presence of high concentrations (>50 mu M) of bilirubin. This paper details the application of ratio spectra derivative spectroscopy to overcome the interference of bilirubin with amphotericin in such situations.
Resumo:
Reliable spectral analysis is only achieved if the spectrum is thoroughly investigated in regard to all hidden and overlapped peaks. This paper describes the steps undertaken to find and separate such peaks in the range of 3000 to 4000 cm(-1) in the case of three different infrared absorption spectra of the glass surface of hydrolyzed silica optical fibers. Peak finding was done by the analysis of the second and fourth derivatives of the digital data, coupled with the available knowledge of infrared spectroscopy of silica-water interaction in the investigated range. Peak separation was accomplished by curve fitting with four different models. The model with the best fit was described by a sum of pure Gaussian peaks. Shoulder limit and detection limit maps were used to validate the revealed spectral features.
Resumo:
A long period grating is interrogated with a fibre Bragg grating using a derivative spectroscopy technique. A quasi-linear relationship between the output of the sensing scheme and the curvature experienced by the long period grating is demonstrated, with a sensitivity of 5.05 m and with an average curvature resolution of 2.9 × 10-2 m-1. In addition, the feasibility of multiplexing an in-line series of long period gratings with this interrogation scheme is demonstrated with two pairs of fibre Bragg gratings and long period gratings. With this arrangement the cross-talk error between channels was less than ± 2.4 × 10-3 m-1.
Resumo:
A long period grating is interrogated with a fibre Bragg grating using a derivative spectroscopy technique. A quasi-linear relationship between the output of the sensing scheme and the curvature experienced by the long period grating is demonstrated, with a sensitivity of 5.05 m and with an average curvature resolution of 2.9 × 10-2 m-1. In addition, the feasibility of multiplexing an in-line series of long period gratings with this interrogation scheme is demonstrated with two pairs of fibre Bragg gratings and long period gratings. With this arrangement the cross-talk error between channels was less than ± 2.4 × 10-3 m-1.
Resumo:
Human hair fibres are ubiquitous in nature and are found frequently at crime scenes often as a result of exchange between the perpetrator, victim and/or the surroundings according to Locard's Principle. Therefore, hair fibre evidence can provide important information for crime investigation. For human hair evidence, the current forensic methods of analysis rely on comparisons of either hair morphology by microscopic examination or nuclear and mitochondrial DNA analyses. Unfortunately in some instances the utilisation of microscopy and DNA analyses are difficult and often not feasible. This dissertation is arguably the first comprehensive investigation aimed to compare, classify and identify the single human scalp hair fibres with the aid of FTIR-ATR spectroscopy in a forensic context. Spectra were collected from the hair of 66 subjects of Asian, Caucasian and African (i.e. African-type). The fibres ranged from untreated to variously mildly and heavily cosmetically treated hairs. The collected spectra reflected the physical and chemical nature of a hair from the near-surface particularly, the cuticle layer. In total, 550 spectra were acquired and processed to construct a relatively large database. To assist with the interpretation of the complex spectra from various types of human hair, Derivative Spectroscopy and Chemometric methods such as Principal Component Analysis (PCA), Fuzzy Clustering (FC) and Multi-Criteria Decision Making (MCDM) program; Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) and Geometrical Analysis for Interactive Aid (GAIA); were utilised. FTIR-ATR spectroscopy had two important advantages over to previous methods: (i) sample throughput and spectral collection were significantly improved (no physical flattening or microscope manipulations), and (ii) given the recent advances in FTIR-ATR instrument portability, there is real potential to transfer this work.s findings seamlessly to on-field applications. The "raw" spectra, spectral subtractions and second derivative spectra were compared to demonstrate the subtle differences in human hair. SEM images were used as corroborative evidence to demonstrate the surface topography of hair. It indicated that the condition of the cuticle surface could be of three types: untreated, mildly treated and treated hair. Extensive studies of potential spectral band regions responsible for matching and discrimination of various types of hair samples suggested the 1690-1500 cm-1 IR spectral region was to be preferred in comparison with the commonly used 1750-800 cm-1. The principal reason was the presence of the highly variable spectral profiles of cystine oxidation products (1200-1000 cm-1), which contributed significantly to spectral scatter and hence, poor hair sample matching. In the preferred 1690-1500 cm-1 region, conformational changes in the keratin protein attributed to the α-helical to β-sheet transitions in the Amide I and Amide II vibrations and played a significant role in matching and discrimination of the spectra and hence, the hair fibre samples. For gender comparison, the Amide II band is significant for differentiation. The results illustrated that the male hair spectra exhibit a more intense β-sheet vibration in the Amide II band at approximately 1511 cm-1 whilst the female hair spectra displayed more intense α-helical vibration at 1520-1515cm-1. In terms of chemical composition, female hair spectra exhibit greater intensity of the amino acid tryptophan (1554 cm-1), aspartic and glutamic acid (1577 cm-1). It was also observed that for the separation of samples based on racial differences, untreated Caucasian hair was discriminated from Asian hair as a result of having higher levels of the amino acid cystine and cysteic acid. However, when mildly or chemically treated, Asian and Caucasian hair fibres are similar, whereas African-type hair fibres are different. In terms of the investigation's novel contribution to the field of forensic science, it has allowed for the development of a novel, multifaceted, methodical protocol where previously none had existed. The protocol is a systematic method to rapidly investigate unknown or questioned single human hair FTIR-ATR spectra from different genders and racial origin, including fibres of different cosmetic treatments. Unknown or questioned spectra are first separated on the basis of chemical treatment i.e. untreated, mildly treated or chemically treated, genders, and racial origin i.e. Asian, Caucasian and African-type. The methodology has the potential to complement the current forensic analysis methods of fibre evidence (i.e. Microscopy and DNA), providing information on the morphological, genetic and structural levels.
Resumo:
This paper concerns the use of photoacoustic spectroscopy (PAS) to study the presence of aromatic amino acid in proteins. We examined the aromatic amino acids in six proteins with well-known structures using absorption spectra of near ultraviolet PAS over the wavelength range 240-320 nm. The fundamental understanding of the physical and chemical properties that govern the absorption of light and a subsequent release of heat to generate a transient pressure wave was used to test the concept of monitoring aromatic amino acids with this method. Second derivative spectroscopy in the ultraviolet region of proteins was also used to study the regions surrounding the aromatics and the percentage area in each band was related in order to determine the contribution in function of the respective molar extinction coefficients for each residue. Further investigation was conducted into the interaction between sodium dodecyl sulphate (SDS) and bothropstoxin-I (BthTx-I), with the purpose of identifying the aromatics that participate in the interaction. The clear changes in the second derivative and curve-fitting procedures suggest that initial SDS binding to the tryptophan located in the dimer interface and above 10 SDS an increased intensity between 260 and 320 nm, demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interactions. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scattering is significant.
Resumo:
介绍了使用法珀(Fabry-Perot,F-P)标准具作为频率标准的三种稳频方法,并且进行理论分析,分别得出了各种方法的鉴频曲线.通过对鉴频曲线进行比较发现边频锁定技术具有斜率大、信号强、控制范围广的优点,优于另外两种方法,是一种理想的激光稳频技术.
Resumo:
Using temperature-derivative spectroscopy in the temperature range below 100 K, we have studied the dependence of the Soret band on the recombination barrier in sperm whale carbonmonoxy myoglobin (MbCO) after photodissociation at 12 K. The spectra were separated into contributions from the photodissociated species, Mb*CO, and CO-bound myoglobin. The line shapes of the Soret bands of both photolyzed and liganded myoglobin were analyzed with a model that takes into account the homogeneous bandwidth, coupling of the electronic transition to vibrational modes, and static conformational heterogeneity. The analysis yields correlations between the activation enthalpy for rebinding and the model parameters that characterize the homogeneous subensembles within the conformationally heterogeneous ensemble. Such couplings between spectral and functional parameters arise when they both originate from a common structural coordinate. This effect is frequently denoted as “kinetic hole burning.” The study of these correlations gives direct insights into the structure–function relationship in proteins. On the basis of earlier work that assigned spectral parameters to geometric properties of the heme, the connections with the heme geometry are discussed. We show that two separate structural coordinates influence the Soret line shape, but only one of the two is coupled to the enthalpy barrier for rebinding. We give evidence that this coordinate, contrary to widespread belief, is not the iron displacement from the mean heme plane.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, d lambda/dR from similar to 7-nm m to similar to 9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organisation. Therefore the development of new practicable and economical diagnostic tools to scrutinise the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals covering both ballistocardiography (below 20Hz) and audible heart sounds (20Hz upwards). The detection scheme is based upon an array of curvature/displacement sensors using fibre optic long period gratings interrogated using a variation of the derivative spectroscopy interrogation technique. © 2014 SPIE.
Resumo:
Preliminary results are given for a long period grating sensing array scheme based upon a derivative spectroscopy interrogation technique for Human Respiratory Plethysmography with simultaneous measurements of a spirometer, reasonable agreement with recorded volumetric changes was found.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso showing reasonable agreement with a spirometer used simultaneously to record the volume at the mouth during breathing. The curvature sensors are based upon long period gratings written in a progressive three layered fibre that are insensitive to refractive index changes. The sensor platform consists of the long period grating laid upon a carbon fibre ribbon, which is encapsulated in a low temperature curing silicone rubber. An array of sensors is also used to reconstruct the shape changes of a resuscitation manikin during simulated respiration. The data for reconstruction is obtained by two methods of multiplexing and interrogation: firstly using the transmission spectral profile of the LPG's attenuation bands measured using an optical spectrum analyser; secondly using a derivative spectroscopy technique.
Resumo:
In this paper, multiplexed sensor network capable of monitoring the shape changes of the torso for respiratory function monitoring is developed. As a demonstration, LPGs written into refractive index insensitive, progressive three layered fibre are embedded into supporting material is then placed on a resuscitation training manikin simulating respiration. A derivative spectroscopy interrogation technique is implemented and the bend sensitivity of the LPGs is used to reconstruct the shape of the manikin's torso. © 2003 IEEE.
Resumo:
Cardiovascular health of the human population is a major concern for medical clinicians, with cardiovascular diseases responsible for 48% of all deaths worldwide, according to the World Health Organisation. Therefore the development of new practicable and economical diagnostic tools to scrutinise the cardiovascular health of humans is a major driver for clinicians. We offer a new technique to obtain seismocardiographic signals covering both ballistocardiography (below 20Hz) and audible heart sounds (20Hz upwards). The detection scheme is based upon an array of curvature/displacement sensors using fibre optic long period gratings interrogated using a variation of the derivative spectroscopy interrogation technique. © 2014 SPIE.