936 resultados para Degenerative Diseases
Resumo:
Object Recent years have been marked by efforts to improve the quality and safety of pedicle screw placement in spinal instrumentation. The aim of the present study is to compare the accuracy of the SpineAssist robot system with conventional fluoroscopy-guided pedicle screw placement. Methods Ninety-five patients suffering from degenerative disease and requiring elective lumbar instrumentation were included in the study. The robot cohort (Group I; 55 patients, 244 screws) consisted of an initial open robot-assisted subgroup (Subgroup IA; 17 patients, 83 screws) and a percutaneous cohort (Subgroup IB, 38 patients, 161 screws). In these groups, pedicle screws were placed under robotic guidance and lateral fluoroscopic control. In the fluoroscopy-guided cohort (Group II; 40 patients, 163 screws) screws were inserted using anatomical landmarks and lateral fluoroscopic guidance. The primary outcome measure was accuracy of screw placement on the Gertzbein-Robbins scale (Grade A to E and R [revised]). Secondary parameters were duration of surgery, blood loss, cumulative morphine, and length of stay. Results In the robot group (Group I), a perfect trajectory (A) was observed in 204 screws (83.6%). The remaining screws were graded B (n = 19 [7.8%]), C (n = 9 [3.7%]), D (n = 4 [1.6%]), E (n = 2 [0.8%]), and R (n = 6 [2.5%]). In the fluoroscopy-guided group (Group II), a completely intrapedicular course graded A was found in 79.8% (n = 130). The remaining screws were graded B (n = 12 [7.4%]), C (n = 10 [6.1%]), D (n = 6 [3.7%]), and E (n = 5 [3.1%]). The comparison of "clinically acceptable" (that is, A and B screws) was neither different between groups (I vs II [p = 0.19]) nor subgroups (Subgroup IA vs IB [p = 0.81]; Subgroup IA vs Group II [p = 0.53]; Subgroup IB vs Group II [p = 0.20]). Blood loss was lower in the robot-assisted group than in the fluoroscopy-guided group, while duration of surgery, length of stay, and cumulative morphine dose were not statistically different. Conclusions Robot-guided pedicle screw placement is a safe and useful tool for assisting spine surgeons in degenerative spine cases. Nonetheless, technical difficulties remain and fluoroscopy backup is advocated.
Resumo:
Retinal degenerative diseases that target photoreceptors or the adjacent retinal pigment epithelium (RPE) affect millions of people worldwide. Retinal degeneration (RD) is found in many different forms of retinal diseases including retinitis pigmentosa (RP), age-related macular degeneration (AMD), diabetic retinopathy, cataracts, and glaucoma. Effective treatment for retinal degeneration has been widely investigated. Gene-replacement therapy has been shown to improve visual function in inherited retinal disease. However, this treatment was less effective with advanced disease. Stem cell-based therapy is being pursued as a potential alternative approach in the treatment of retinal degenerative diseases. In this review, we will focus on stem cell-based therapies in the pipeline and summarize progress in treatment of retinal degenerative disease.
Resumo:
Although more than 100 genes associated with inherited retinal disease have been mapped to chromosomal locations, less than half of these genes have been cloned. This text includes identification and evaluation of candidate genes for three autosomal dominant forms of inherited retinal degeneration: atypical vitelliform macular dystrophy (VMD1), cone-rod dystrophy (CORD), and retinitis pigmentosa (RP). ^ VMD1 is a disorder characterized by complete penetrance but extremely variable expressivity, and includes macular or peripheral retinal lesions and peripappilary abnormalitites. In 1984, linkage was reported between VMD1 and soluble glutamate-pyruvate transaminase GPT); however, placement of GPT to 8q24 on linkage maps had been debated, and VMD1 did not show linkage to microsatellite markers in that region. This study excluded linkage between the loci by cloning GPT, identifying the nucleotide substitution associated with the GPT sozymes, and by assaying VMD1 family samples with an RFLP designed to detect the substitution. In addition, linkage of VMD1 to the known dominant macular degeneration loci was excluded. ^ CORD is characterized by early onset of color-vision deficiency, and decreased visual acuity, However, this retinal degeneration progresses to no light perception, severe macular lesion, and “bone-spicule” accumulations in the peripheral retina. In this study, the disorder in a large Texan family was mapped to the CORD2 locus of 19q13, and a mutation in the retina/pineal-specific cone-rod homeobox gene (CRX) was identified as the disease cause. In addition, mutations in CRX were associated with significantly different retinal disease phenotypes, including retinitis pigmentosa and Leber congenital amaurosis. ^ Many of the mutations leading to inherited retinal disorders have been identified in genes like CRX, which are expressed predominantly in the retina and pineal gland. Therefore, a combination of database analysis and laboratory investigation was used to identify 26 novel retina/pineal-specific expressed sequence tag (EST) clusters as candidate genes for inherited retinal disorders. Eight of these genes were mapped into the candidate regions of inherited retinal degeneration loci. ^ Two of the eight clusters mapped into the retinitis pigmentosa RP13 candidate region of 17p13, and were both determined to represent a single gene that is highly expressed in photoreceptors. This gene, the Ah receptor-interacting like protein-1 (AIPL1), was cloned, characterized, and screened for mutations in RP13 patient DNA samples. ^
Resumo:
Objective: To know the impact of the Dynesys system on the functional outcomes in patients with spinal degenerative diseases. Summary of background data: Dynesys system has been proposed as an alternative to vertebral fusion for several spinal degenerative diseases. The fact that it has been used in people with different diagnosis criteria using different tools to measure clinical outcomes makes very difficult unifying the results available nowadays. Methods: The data base of Medlars Online International Literature (MEDLINE) via PubMed©, EMBASE©, and the Cochrane Library Plus were reviewed in search of all the studies published until November 2012 in which an operation with Dynesys in patients with spinal degenerative diseases and an evaluation of the results by an analysis of functional outcomes had taken place. No limits were used to article type, date of publication or language. Results: A total of 134 articles were found, 26 of which fulfilled the inclusion criteria after being assessed by two reviewers. All of them were case series, except for a multicenter randomized clinical trial (RCT) and a prospective case-control study. The selected articles made a total of 1507 cases. The most frequent diagnosis were lumbar spinal canal stenosis (LSCS), degenerative disc disease (DDD), degenerative spondylolisthesis (DS) and lumbar degenerative scoliosis (LDS). In cases of lumbar spinal canal stenosis Dynesys was associated to surgical decompression. Several tools to measure the functional disability and general health status were found. Oswestry Disability Index (ODI), the ODI Korean version (K-Odi), Prolo, Sf-36, Sf-12, Roland-Morris disability questionnaire (RMDQ), and the pain Visual Analogue Scale (VAS) were the most used. They showed positive results in all cases series reviewed. In most studies the ODI decreased about 25% (e.g. from a score of 85% to 60%). Better results when dynamic fusion was combined with nerve root decompression were found. Functional outcomes and leg pain scores with Dynesys were statistically non-inferior to posterolateral spinal fusion using autogenous bone. When Dynesys and decompression was compared with posterior interbody lumbar fixation (PLIF) and decompression, differences in ODI and VAS were not statistically significant. Conclusions: In patients with spinal degenerative diseases due to degenerative disc disorders, spinal canal stenosis and degenerative spondylolisthesis, surgery with Dynesys and decompression improves functional outcomes, decreases disability, and reduces back and leg pain. More studies are needed to conclude that dynamic stabilization is better than posterolateral and posterior interbody lumbar fusion. Studies comparing Dynesys with decompression against decompression alone should be done in order to isolate the effect of the dynamic stabilization.
Resumo:
Infectious and parasitic diseases have always challenged man. Although many of them are typically seen in some areas of the world and can be adequately managed by just improving socioeconomic status and sanitary conditions, they are still quite prevalent and may sometimes be seen outside their original geographical areas. Human migration due to different reasons, tourism, blood transfusion and solid organ transplantation has created new concerns for health professionals all over the world. If not for diagnostic purposes, at least these tropical and infectious diseases should be largely known because their epidemiology, pathogenesis, host/parasite interaction, inflammatory and reparative responses are quite interesting and teach us about human biology. Curiosity is inherent to pathology practice and so we are compelled to look for things other than tumours or degenerative diseases. This review focuses on infectious and parasitic diseases found in a developing country and brings up-to-date information on diseases caused by viruses (dengue, yellow fever), bacteria (typhoid fever, leprosy), parasites (Chagas` disease, cutaneous and visceral leishmaniasis, amoebiasis, Capillaria hepatica, schistosomiasis, cysticercosis) and caused by fungi (paracoccidioidomycosis, cryptococcosis, histoplasmosis) that may be useful for pathologists when facing somewhat strange cases from developing countries.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Resumo:
The modern approach to the development of new chemical entities against complex diseases, especially the neglected endemic diseases such as tuberculosis and malaria, is based on the use of defined molecular targets. Among the advantages, this approach allows (i) the search and identification of lead compounds with defined molecular mechanisms against a defined target (e.g. enzymes from defined pathways), (ii) the analysis of a great number of compounds with a favorable cost/benefit ratio, (iii) the development even in the initial stages of compounds with selective toxicity (the fundamental principle of chemotherapy), (iv) the evaluation of plant extracts as well as of pure substances. The current use of such technology, unfortunately, is concentrated in developed countries, especially in the big pharma. This fact contributes in a significant way to hamper the development of innovative new compounds to treat neglected diseases. The large biodiversity within the territory of Brazil puts the country in a strategic position to develop the rational and sustained exploration of new metabolites of therapeutic value. The extension of the country covers a wide range of climates, soil types, and altitudes, providing a unique set of selective pressures for the adaptation of plant life in these scenarios. Chemical diversity is also driven by these forces, in an attempt to best fit the plant communities to the particular abiotic stresses, fauna, and microbes that co-exist with them. Certain areas of vegetation (Amazonian Forest, Atlantic Forest, Araucaria Forest, Cerrado-Brazilian Savanna, and Caatinga) are rich in species and types of environments to be used to search for natural compounds active against tuberculosis, malaria, and chronic-degenerative diseases. The present review describes some strategies to search for natural compounds, whose choice can be based on ethnobotanical and chemotaxonomical studies, and screen for their ability to bind to immobilized drug targets and to inhibit their activities. Molecular cloning, gene knockout, protein expression and purification, N-terminal sequencing, and mass spectrometry are the methods of choice to provide homogeneous drug targets for immobilization by optimized chemical reactions. Plant extract preparations, fractionation of promising plant extracts, propagation protocols and definition of in planta studies to maximize product yield of plant species producing active compounds have to be performed to provide a continuing supply of bioactive materials. Chemical characterization of natural compounds, determination of mode of action by kinetics and other spectroscopic methods (MS, X-ray, NMR), as well as in vitro and in vivo biological assays, chemical derivatization, and structure-activity relationships have to be carried out to provide a thorough knowledge on which to base the search for natural compounds or their derivatives with biological activity.
Resumo:
OBJECTIVES: To merge clinical information from partly overlapping medical record databases of the Small Animal Teaching Hospital of the Vetsuisse Faculty, University of Berne. To describe the frequencies and localisations of neurological diseases in dogs, as well as their age, gender, breed and geographical distributions. METHODS: In this retrospective study, a new database, with specific variables and a diagnosis key list 'VITAMIN D', was created and defined. A total of 4497 dogs (average of 375 per year) with a well-documented neurological disease were included in the study. A key list for the diagnoses was developed and applied to either the presumptive or the clinical and neurohistopathological diagnosis, with a serial number, a code for localisation and a code for differential diagnoses. RESULTS: Approximately 1159 dogs (26 per cent) had a neurohistopathological diagnosis confirmed, 1431 (32 per cent) had a clinical diagnosis confirmed and 1491 (33 per cent) had a presumptive diagnosis. The most frequent breeds were mixed-breed dogs (577 of 4497, 13 per cent), followed by German shepherd dogs (466 of 4497, 10 per cent). The most common localisations were the forebrain (908 of 4497, 20 per cent) and the spinal cord at the thoracolumbar area (840 of 4497, 19 per cent). Most dogs were diagnosed with degenerative diseases (38 per cent), followed by inflammatory/infectious diseases (14 per cent). The highest number of submissions originated from geographic regions around the referral hospital and from regions with higher human population densities. CLINICAL SIGNIFICANCE: By defining closed-list fields and allocating all data to the corresponding fields, a standardised database that can be used for further studies was generated. The analysis of this study gives examples of the possible uses of a standardised database.
Resumo:
Many transcription factors and some other proteins contain glutamine repeats; their abnormal expansion has been linked to several dominantly inherited neuro-degenerative diseases. Having found that poly(L-glutamine) alone forms beta-strands held together by hydrogen bonds between their amide groups, we surmised that glutamine repeats may form polar zippers, an unusual motif for protein-protein interactions. To test this hypothesis, we have engineered a Gly-Gln10-Gly peptide into the inhibitory loop of truncated chymotrypsin inhibitor 2 (CI2), a small protein from barley seeds, by both insertion and replacement. Gel filtration resolved both mutant inhibitors into at least three fractions, which analytical ultracentrifugation identified as monomers, dimers, and trimers of the recombinant protein; the truncated wild-type CI2 formed only monomers. CD difference spectra of the dimers and trimers versus wild type indicated that their glutamine repeats formed beta-pleated sheets, while those of the monomers versus wild type were more suggestive of type I beta-turns. The CD spectra of all three fractions remained unchanged even after incubation at 70 degrees C; neither the dimers nor the trimers dissociated at this temperature. We argue that the stability of all three fractions is due to the multiplicity of hydrogen bonds between extended strands of glutamine repeats in the oligomers or within a beta-hairpin formed by the single glutamine repeat of each monomer. Pathological effects may arise when expanded glutamine repeats cause proteins to acquire excessively high affinities for each other or for other proteins with glutamine repeats.
Resumo:
The over-production of reactive oxygen species (ROS) can cause oxidative damage to a large number of molecules, including DNA, and has been associated with the pathogenesis of several disorders, such as diabetes mellitus (DM), dyslipidemia and periodontitis (PD). We hypothesise that the presence of these diseases could proportionally increase the DNA damage. The aim of this study was to assess the micronucleus frequency (MNF), as a biomarker for DNA damage, in individuals with type 2 DM, dyslipidemia and PD. One hundred and fifty patients were divided into five groups based upon diabetic, dyslipidemic and periodontal status (Group 1 - poor controlled DM with dyslipidemia and PD; Group 2 - well-controlled DM with dyslipidemia and PD; Group 3 - without DM with dyslipidemia and PD; Group 4 - without DM, without dyslipidemia and with PD; and Group 5 - without DM, dyslipidemia and PD). Blood analyses were carried out for fasting plasma glucose, HbA1c and lipid profile. Periodontal examinations were performed, and venous blood was collected and processed for micronucleus (MN) assay. The frequency of micronuclei was evaluated by cell culture cytokinesis-block MN assay. The general characteristics of each group were described by the mean and standard deviation and the data were submitted to the Mann-Whitney, Kruskal-Wallis, Multiple Logistic Regression and Spearman tests. The Groups 1, 2 and 3 were similarly dyslipidemic presenting increased levels of total cholesterol, low density lipoprotein cholesterol and triglycerides. Periodontal tissue destruction and local inflammation were significantly more severe in diabetics, particularly in Group 1. Frequency of bi-nucleated cells with MN and MNF, as well as nucleoplasmic bridges, were significantly higher for poor controlled diabetics with dyslipidemia and PD in comparison with those systemically healthy, even after adjusting for age, and considering Bonferroni's correction. Elevated frequency of micronuclei was found in patients affected by type 2 diabetes, dyslipidemia and PD. This result suggests that these three pathologies occurring simultaneously promote an additional role to produce DNA impairment. In addition, the micronuclei assay was useful as a biomarker for DNA damage in individuals with chronic degenerative diseases.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
SHED (stem cells from human exfoliated deciduous teeth) represent a population of postnatal stem cells capable of extensive proliferation and multipotential differentiation. Primary teeth may be an ideal source of postnatal stem cells to regenerate tooth structures and bone, and possibly to treat neural tissue injury or degenerative diseases. SHED are highly proliferative cells derived from an accessible tissue source, and therefore hold potential for providing enough cells for clinical applications. In this review, we describe the current knowledge about dental pulp stem cells and discuss tissue engineering approaches that use SHED to replace irreversibly inflamed or necrotic pulps with a healthy and functionally competent tissue that is capable of forming new dentin.