948 resultados para Debris flows


Relevância:

100.00% 100.00%

Publicador:

Resumo:

EXTRACT (SEE PDF FOR FULL ABSTRACT): Since 1986, the U.S. Geological Survey and National Weather Service have operated a warning system for debris flows triggered by severe rainstorms in the San Francisco Bay region. The NWS tracks storm systems as they approach the region, forecasts precipitation, and observes rainfall with a network of radiotelemetered rain gauges (ALERT). The USGS also monitors ALERT data and compares the observed and forecast rainfall to thresholds for debris-flow initiation. Both groups jointly assess debris-flow hazards and issue public advisories when rainfall conditions reach or approach critical levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A characteristic rainfall is introduced to overcome the difficulties encountered in determining a critical rainfall value for triggering debris flow. The characteristic value is defined as the rainfall at which debris-flow occurrence probability shows a rapid increase, and can be used as a warning rainfall threshold for debris flows. Investigation of recorded debris flows and 24-hour rainfall data at Jiangjia basin, Yunnan Province, in southwestern China, demonstrates the existence of such a characteristic rainfall. It was found that the characteristic rainfall corresponds to the daily rainfall of 90% cumulative probability by analyzing the basin's daily rainfall histogram. The result provides a simple and useful method for estimating a debris-flow warning rainfall threshold from the daily rainfall distribution. It was applied to estimate the debris-flow warning rainfall threshold for the Subaohe basin, a watershed in the 2008 Wenchuan earthquake zone with many physical characteristics similar to those of the Jiangjia basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by process-based modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under http://www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws. We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10 m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25 m resolution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on historic documents the event history for 17 mountain torrents in the Swiss Alps was evaluated. Four classes could be determined for the recurrence interval of the debris flow events. The magnitude is not necessarily dependent on the recurrence interval. The characteristics of the catchment basin (disposition) are mainly controlling the magnitude. In order to evaluate the effects of climatic change on the debris flow activity, knowledge about the magnitude and the frequency are necessary.