842 resultados para Data Mining, Yield Improvement, Self Organising Map, Clustering Quality


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advancements in information technology have made it possible for organizations to gather and store vast amounts of data of their customers. Information stored in databases can be highly valuable for organizations. However, analyzing large databases has proven to be difficult in practice. For companies in the retail industry, customer intelligence can be used to identify profitable customers, their characteristics, and behavior. By clustering customers into homogeneous groups, companies can more effectively manage their customer base and target profitable customer segments. This thesis will study the use of the self-organizing map (SOM) as a method for analyzing large customer datasets, clustering customers, and discovering information about customer behavior. Aim of the thesis is to find out whether the SOM could be a practical tool for retail companies to analyze their customer data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel extension to Kohonen's self-organising map, called the plastic self organising map (PSOM), is presented. PSOM is unlike any other network because it only has one phase of operation. The PSOM does not go through a training cycle before testing, like the SOM does and its variants. Each pattern is thus treated identically for all time. The algorithm uses a graph structure to represent data and can add or remove neurons to learn dynamic nonstationary pattern sets. The network is tested on a real world radar application and an artificial nonstationary problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data Mining, Vision Restoration, Treatment outcome prediction, Self-Organising-Map

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solar-powered vehicle activated signs (VAS) are speed warning signs powered by batteries that are recharged by solar panels. These signs are more desirable than other active warning signs due to the low cost of installation and the minimal maintenance requirements. However, one problem that can affect a solar-powered VAS is the limited power capacity available to keep the sign operational. In order to be able to operate the sign more efficiently, it is proposed that the sign be appropriately triggered by taking into account the prevalent conditions. Triggering the sign depends on many factors such as the prevailing speed limit, road geometry, traffic behaviour, the weather and the number of hours of daylight. The main goal of this paper is therefore to develop an intelligent algorithm that would help optimize the trigger point to achieve the best compromise between speed reduction and power consumption. Data have been systematically collected whereby vehicle speed data were gathered whilst varying the value of the trigger speed threshold. A two stage algorithm is then utilized to extract the trigger speed value. Initially the algorithm employs a Self-Organising Map (SOM), to effectively visualize and explore the properties of the data that is then clustered in the second stage using K-means clustering method. Preliminary results achieved in the study indicate that using a SOM in conjunction with K-means method is found to perform well as opposed to direct clustering of the data by K-means alone. Using a SOM in the current case helped the algorithm determine the number of clusters in the data set, which is a frequent problem in data clustering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Information Systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die zunehmende Vernetzung der Informations- und Kommunikationssysteme führt zu einer weiteren Erhöhung der Komplexität und damit auch zu einer weiteren Zunahme von Sicherheitslücken. Klassische Schutzmechanismen wie Firewall-Systeme und Anti-Malware-Lösungen bieten schon lange keinen Schutz mehr vor Eindringversuchen in IT-Infrastrukturen. Als ein sehr wirkungsvolles Instrument zum Schutz gegenüber Cyber-Attacken haben sich hierbei die Intrusion Detection Systeme (IDS) etabliert. Solche Systeme sammeln und analysieren Informationen von Netzwerkkomponenten und Rechnern, um ungewöhnliches Verhalten und Sicherheitsverletzungen automatisiert festzustellen. Während signatur-basierte Ansätze nur bereits bekannte Angriffsmuster detektieren können, sind anomalie-basierte IDS auch in der Lage, neue bisher unbekannte Angriffe (Zero-Day-Attacks) frühzeitig zu erkennen. Das Kernproblem von Intrusion Detection Systeme besteht jedoch in der optimalen Verarbeitung der gewaltigen Netzdaten und der Entwicklung eines in Echtzeit arbeitenden adaptiven Erkennungsmodells. Um diese Herausforderungen lösen zu können, stellt diese Dissertation ein Framework bereit, das aus zwei Hauptteilen besteht. Der erste Teil, OptiFilter genannt, verwendet ein dynamisches "Queuing Concept", um die zahlreich anfallenden Netzdaten weiter zu verarbeiten, baut fortlaufend Netzverbindungen auf, und exportiert strukturierte Input-Daten für das IDS. Den zweiten Teil stellt ein adaptiver Klassifikator dar, der ein Klassifikator-Modell basierend auf "Enhanced Growing Hierarchical Self Organizing Map" (EGHSOM), ein Modell für Netzwerk Normalzustand (NNB) und ein "Update Model" umfasst. In dem OptiFilter werden Tcpdump und SNMP traps benutzt, um die Netzwerkpakete und Hostereignisse fortlaufend zu aggregieren. Diese aggregierten Netzwerkpackete und Hostereignisse werden weiter analysiert und in Verbindungsvektoren umgewandelt. Zur Verbesserung der Erkennungsrate des adaptiven Klassifikators wird das künstliche neuronale Netz GHSOM intensiv untersucht und wesentlich weiterentwickelt. In dieser Dissertation werden unterschiedliche Ansätze vorgeschlagen und diskutiert. So wird eine classification-confidence margin threshold definiert, um die unbekannten bösartigen Verbindungen aufzudecken, die Stabilität der Wachstumstopologie durch neuartige Ansätze für die Initialisierung der Gewichtvektoren und durch die Stärkung der Winner Neuronen erhöht, und ein selbst-adaptives Verfahren eingeführt, um das Modell ständig aktualisieren zu können. Darüber hinaus besteht die Hauptaufgabe des NNB-Modells in der weiteren Untersuchung der erkannten unbekannten Verbindungen von der EGHSOM und der Überprüfung, ob sie normal sind. Jedoch, ändern sich die Netzverkehrsdaten wegen des Concept drif Phänomens ständig, was in Echtzeit zur Erzeugung nicht stationärer Netzdaten führt. Dieses Phänomen wird von dem Update-Modell besser kontrolliert. Das EGHSOM-Modell kann die neuen Anomalien effektiv erkennen und das NNB-Model passt die Änderungen in Netzdaten optimal an. Bei den experimentellen Untersuchungen hat das Framework erfolgversprechende Ergebnisse gezeigt. Im ersten Experiment wurde das Framework in Offline-Betriebsmodus evaluiert. Der OptiFilter wurde mit offline-, synthetischen- und realistischen Daten ausgewertet. Der adaptive Klassifikator wurde mit dem 10-Fold Cross Validation Verfahren evaluiert, um dessen Genauigkeit abzuschätzen. Im zweiten Experiment wurde das Framework auf einer 1 bis 10 GB Netzwerkstrecke installiert und im Online-Betriebsmodus in Echtzeit ausgewertet. Der OptiFilter hat erfolgreich die gewaltige Menge von Netzdaten in die strukturierten Verbindungsvektoren umgewandelt und der adaptive Klassifikator hat sie präzise klassifiziert. Die Vergleichsstudie zwischen dem entwickelten Framework und anderen bekannten IDS-Ansätzen zeigt, dass der vorgeschlagene IDSFramework alle anderen Ansätze übertrifft. Dies lässt sich auf folgende Kernpunkte zurückführen: Bearbeitung der gesammelten Netzdaten, Erreichung der besten Performanz (wie die Gesamtgenauigkeit), Detektieren unbekannter Verbindungen und Entwicklung des in Echtzeit arbeitenden Erkennungsmodells von Eindringversuchen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual data mining (VDM) tools employ information visualization techniques in order to represent large amounts of high-dimensional data graphically and to involve the user in exploring data at different levels of detail. The users are looking for outliers, patterns and models – in the form of clusters, classes, trends, and relationships – in different categories of data, i.e., financial, business information, etc. The focus of this thesis is the evaluation of multidimensional visualization techniques, especially from the business user’s perspective. We address three research problems. The first problem is the evaluation of projection-based visualizations with respect to their effectiveness in preserving the original distances between data points and the clustering structure of the data. In this respect, we propose the use of existing clustering validity measures. We illustrate their usefulness in evaluating five visualization techniques: Principal Components Analysis (PCA), Sammon’s Mapping, Self-Organizing Map (SOM), Radial Coordinate Visualization and Star Coordinates. The second problem is concerned with evaluating different visualization techniques as to their effectiveness in visual data mining of business data. For this purpose, we propose an inquiry evaluation technique and conduct the evaluation of nine visualization techniques. The visualizations under evaluation are Multiple Line Graphs, Permutation Matrix, Survey Plot, Scatter Plot Matrix, Parallel Coordinates, Treemap, PCA, Sammon’s Mapping and the SOM. The third problem is the evaluation of quality of use of VDM tools. We provide a conceptual framework for evaluating the quality of use of VDM tools and apply it to the evaluation of the SOM. In the evaluation, we use an inquiry technique for which we developed a questionnaire based on the proposed framework. The contributions of the thesis consist of three new evaluation techniques and the results obtained by applying these evaluation techniques. The thesis provides a systematic approach to evaluation of various visualization techniques. In this respect, first, we performed and described the evaluations in a systematic way, highlighting the evaluation activities, and their inputs and outputs. Secondly, we integrated the evaluation studies in the broad framework of usability evaluation. The results of the evaluations are intended to help developers and researchers of visualization systems to select appropriate visualization techniques in specific situations. The results of the evaluations also contribute to the understanding of the strengths and limitations of the visualization techniques evaluated and further to the improvement of these techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data mining, as a heatedly discussed term, has been studied in various fields. Its possibilities in refining the decision-making process, realizing potential patterns and creating valuable knowledge have won attention of scholars and practitioners. However, there are less studies intending to combine data mining and libraries where data generation occurs all the time. Therefore, this thesis plans to fill such a gap. Meanwhile, potential opportunities created by data mining are explored to enhance one of the most important elements of libraries: reference service. In order to thoroughly demonstrate the feasibility and applicability of data mining, literature is reviewed to establish a critical understanding of data mining in libraries and attain the current status of library reference service. The result of the literature review indicates that free online data resources other than data generated on social media are rarely considered to be applied in current library data mining mandates. Therefore, the result of the literature review motivates the presented study to utilize online free resources. Furthermore, the natural match between data mining and libraries is established. The natural match is explained by emphasizing the data richness reality and considering data mining as one kind of knowledge, an easy choice for libraries, and a wise method to overcome reference service challenges. The natural match, especially the aspect that data mining could be helpful for library reference service, lays the main theoretical foundation for the empirical work in this study. Turku Main Library was selected as the case to answer the research question: whether data mining is feasible and applicable for reference service improvement. In this case, the daily visit from 2009 to 2015 in Turku Main Library is considered as the resource for data mining. In addition, corresponding weather conditions are collected from Weather Underground, which is totally free online. Before officially being analyzed, the collected dataset is cleansed and preprocessed in order to ensure the quality of data mining. Multiple regression analysis is employed to mine the final dataset. Hourly visits are the independent variable and weather conditions, Discomfort Index and seven days in a week are dependent variables. In the end, four models in different seasons are established to predict visiting situations in each season. Patterns are realized in different seasons and implications are created based on the discovered patterns. In addition, library-climate points are generated by a clustering method, which simplifies the process for librarians using weather data to forecast library visiting situation. Then the data mining result is interpreted from the perspective of improving reference service. After this data mining work, the result of the case study is presented to librarians so as to collect professional opinions regarding the possibility of employing data mining to improve reference services. In the end, positive opinions are collected, which implies that it is feasible to utilizing data mining as a tool to enhance library reference service.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The principle of using induction rules based on spatial environmental data to model a soil map has previously been demonstrated Whilst the general pattern of classes of large spatial extent and those with close association with geology were delineated small classes and the detailed spatial pattern of the map were less well rendered Here we examine several strategies to improve the quality of the soil map models generated by rule induction Terrain attributes that are better suited to landscape description at a resolution of 250 m are introduced as predictors of soil type A map sampling strategy is developed Classification error is reduced by using boosting rather than cross validation to improve the model Further the benefit of incorporating the local spatial context for each environmental variable into the rule induction is examined The best model was achieved by sampling in proportion to the spatial extent of the mapped classes boosting the decision trees and using spatial contextual information extracted from the environmental variables.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação apresentada como requisito parcial para a obtenção do grau de mestre em Estatística e Gestão de Informação.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lecture Notes in Computer Science, 9273