970 resultados para DRIVEN SOLAR-WIND


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect on geomagnetic activity of solar wind speed, compared with that of the strength of the interplanetary magnetic field, differs with geomagnetic latitude. In this study we construct a new index based on monthly standard deviations in the H-component of the geomagnetic field for all geomagnetic latitudes. We demonstrate that for this index the response at auroral regions correlates best with interplanetary coupling functions which include the solar wind speed while mid- and low-latitude regions respond to variations in the interplanetary magnetic field strength. These results are used to isolate the responsible geomagnetic current systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Basic concepts of the form of high-latitude ionospheric flows and their excitation and decay are discussed in the light of recent high time-resolution measurements made by ground-based radars. It is first pointed out that it is in principle impossible to adequately parameterize these flows by any single quantity derived from concurrent interplanetary conditions. Rather, even at its simplest, the flow must be considered to consist of two basic time-dependent components. The first is the flow driven by magnetopause coupling processes alone, principally by dayside reconnection. These flows may indeed be reasonably parameterized in terms of concurrent near-Earth interplanetary conditions, principally by the interplanetary magnetic field (IMF) vector. The second is the flow driven by tail reconnection alone. As a first approximation these flows may also be parameterized in terms of interplanetary conditions, principally the north-south component of the IMF, but with a delay in the flow response of around 30-60 min relative to the IMF. A delay in the tail response of this order must be present due to the finite speed of information propagation in the system, and we show how "growth" and "decay" of the field and flow configuration then follow as natural consequences. To discuss the excitation and decay of the two reconnection-driven components of the flow we introduce that concept of a flow-free equilibrium configuration for a magnetosphere which contains a given (arbitrary) amount of open flux. Reconnection events act either to create or destroy open flux, thus causing departures of the system from the equilibrium configuration. Flow is then excited which moves the system back towards equilibrium with the changed amount of open flux. We estimate that the overall time scale associated with the excitation and decay of the flow is about 15 min. The response of the system to both impulsive (flux transfer event) and continuous reconnection is discussed in these terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, the solar wind-magnetosphere-ionosphere coupling is studied observationally, with the main focus on the ionospheric currents in the auroral region. The thesis consists of five research articles and an introductory part that summarises the most important results reached in the articles and places them in a wider context within the field of space physics. Ionospheric measurements are provided by the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer network, by the low-orbit CHAllenging Minisatellite Payload (CHAMP) satellite, by the European Incoherent SCATter (EISCAT) radar, and by the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) satellite. Magnetospheric observations, on the other hand, are acquired from the four spacecraft of the Cluster mission, and solar wind observations from the Advanced Composition Explorer (ACE) and Wind spacecraft. Within the framework of this study, a new method for determining the ionospheric currents from low-orbit satellite-based magnetic field data is developed. In contrast to previous techniques, all three current density components can be determined on a matching spatial scale, and the validity of the necessary one-dimensionality approximation, and thus, the quality of the results, can be estimated directly from the data. The new method is applied to derive an empirical model for estimating the Hall-to-Pedersen conductance ratio from ground-based magnetic field data, and to investigate the statistical dependence of the large-scale ionospheric currents on solar wind and geomagnetic parameters. Equations describing the amount of field-aligned current in the auroral region, as well as the location of the auroral electrojets, as a function of these parameters are derived. Moreover, the mesoscale (10-1000 km) ionospheric equivalent currents related to two magnetotail plasma sheet phenomena, bursty bulk flows and flux ropes, are studied. Based on the analysis of 22 events, the typical equivalent current pattern related to bursty bulk flows is established. For the flux ropes, on the other hand, only two conjugate events are found. As the equivalent current patterns during these two events are not similar, it is suggested that the ionospheric signatures of a flux rope depend on the orientation and the length of the structure, but analysis of additional events is required to determine the possible ionospheric connection of flux ropes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report here results from a dynamo model developed on the lines of the Babcock-Leighton idea that the poloidal field is generated at the surface of the Sun from the decay of active regions. In this model magnetic buoyancy is handled with a realistic recipe - wherein toroidal flux is made to erupt from the overshoot layer wherever it exceeds a specified critical field B-C (10(5) G). The erupted toroidal field is then acted upon by the alpha-effect near the surface to give rise to the poloidal field. In this paper we study the effect of buoyancy on the dynamo generated magnetic fields. Specifically, we show that the mechanism of buoyant eruption and the subsequent depletion of the toroidal field inside the overshoot layer, is capable of constraining the magnitude and distribution of the magnetic field there. We also believe that a critical study of this mechanism may give us new information regarding the solar interior and end with an example, where we propose a method for estimating an upper limit of the difusivity within the overshoot layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the general Mach number equation is derived, and the influence of typical energy forms in the solar wind is analysed in detail. It shows that the accelerating process of the solar wind is influenced critically by the form of heating in the corona, and that the transonic mechanism is mainly the result of the adjustment of the variation of the crosssection of flowing tubes and the heat source term.The accelerating mechanism for both the high-speed stream from the coronal hole and the normal solar wind is similar. But, the temperature is low in the lower level of the coronal hole and more heat energy supply in the outside is required, hence the high speed of the solar wind; while the case with the ordinary coronal region is just the opposite, and the velocity of the solar wind is therefore lower. The accelerating process for various typical parameters is calculated, and it is found that the high-speed stream may reach 800 km/sec.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Jones, R. A.; Breen, A. R.; Fallows, R. A.; Canals, A.; Bisi, M. M.; Lawrence, G. (2007). Interaction between coronal mass ejections and the solar wind, Journal of Geophysical Research, 112, Issue A8 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Canals, A.; Breen, A. R.; Ofman, L.; Moran, P. J.; Fallows, R. A., Estimating random transverse velocities in the fast solar wind from EISCAT Interplanetary Scintillation measurements, Annales Geophysicae, vol. 20, Issue 9, pp.1265-1277

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Li, Xing, 'Transition region, coronal heating and the fast solar wind', Astronomy and Astrophysics (2003) 406 pp.345-356 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breen, Andrew; Fallows, R. A.; Thomasson, P.; Bisi, M. M., 'Extremely long baseline interplanetary scintillation measurements of solar wind velocity', Journal of Geophysical Research (2006) 111(A8) pp.A08104 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Li, Xing; Habbal, S.R., (2005) 'Hybrid simulation of ion cyclotron resonance in the solar wind: evolution of velocity distribution functions', Journal of Geophysical Research 110(A10) pp.A10109 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breen, Andrew; Bisi, M.M.; Fallows, R.A.; Habbal, S.R., (2007) 'Large-scale structure of the fast solar wind', Journal of Geophysical Research 112(A6) pp.A06101 RAE2008

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Charge exchange X-ray and far-ultraviolet (FUV) aurorae can provide detailed insight into the interaction between solar system plasmas. Using the two complementary experimental techniques of photon emission spectroscopy and translation energy spectroscopy, we have studied state-selective charge exchange in collisions between fully ionized helium and target gasses characteristic of cometary and planetary atmospheres (H2O, CO2, CO, and CH4). The experiments were performed at velocities typical for the solar wind (200-1500 km s(-1)). Data sets are produced that can be used for modeling the interaction of solar wind alpha particles with cometary and planetary atmospheres. These data sets are used to demonstrate the diagnostic potential of helium line emission. Existing Extreme Ultraviolet Explorer (EUVE) observations of comets Hyakutake and Hale-Bopp are analyzed in terms of solar wind and coma characteristics. The case of Hale-Bopp illustrates well the dependence of the helium line emission to the collision velocity. For Hale-Bopp, our model requires low velocities in the interaction zone. We interpret this as the effect of severe post-bow shock cooling in this extraordinary large comet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

X-ray emission from a comet was observed for the first time in 1996. One of the mechanisms believed to be contributing to this surprisingly strong emission is the interaction of highly charged solar wind ions with cometary gases. Reported herein are total absolute charge-exchange and normalized line-emission (X-ray) cross sections for collisions of high-charge state (+3 to +10) C, N, O, and Ne ions with the cometary species H2O and CO2. It is found that in several cases the double charge-exchange cross sections can be large, and in the case of C3+ they are equal to those for single charge exchange. Present results are compared to cross section values used in recent comet models. The importance of applying accurate cross sections, including double charge exchange, to obtain absolute line-emission intensities is emphasized.