958 resultados para DNA Polymerase II
Resumo:
Escherichia coli possesses three SOS-inducible DNA polymerases (Pol II, IV, and V) that were recently found to participate in translesion synthesis and mutagenesis. Involvement of these polymerases appears to depend on the nature of the lesion and its local sequence context, as illustrated by the bypass of a single N-2-acetylaminofluorene adduct within the NarI mutation hot spot. Indeed, error-free bypass requires Pol V (umuDC), whereas mutagenic (−2 frameshift) bypass depends on Pol II (polB). In this paper, we show that purified DNA Pol II is able in vitro to generate the −2 frameshift bypass product observed in vivo at the NarI sites. Although the ΔpolB strain is completely defective in this mutation pathway, introduction of the polB gene on a low copy number plasmid restores the −2 frameshift pathway. In fact, modification of the relative copy number of polB versus umuDC genes results in a corresponding modification in the use of the frameshift versus error-free translesion pathways, suggesting a direct competition between Pol II and V for the bypass of the same lesion. Whether such a polymerase competition model for translesion synthesis will prove to be generally applicable remains to be confirmed.
Resumo:
DPB11, a gene that suppresses mutations in two essential subunits of Saccharomyces cerevisiae DNA polymerase II(epsilon) encoded by POL2 and DPB2, was isolated on a multicopy plasmid. The nucleotide sequence of the DPB11 gene revealed an open reading frame predicting an 87-kDa protein. This protein is homologous to the Schizosaccharomyces pombe rad4+/cut5+ gene product that has a cell cycle checkpoint function. Disruption of DPB11 is lethal, indicating that DPB11 is essential for cell proliferation. In thermosensitive dpb11-1 mutant cells, S-phase progression is defective at the nonpermissive temperature, followed by cell division with unequal chromosomal segregation accompanied by loss of viability.dpb11-1 is synthetic lethal with any one of the dpb2-1, pol2-11, and pol2-18 mutations at all temperatures. Moreover, dpb11 cells are sensitive to hydroxyurea, methyl methanesulfonate, and UV irradiation. These results strongly suggest that Dpb11 is a part of the DNA polymerase II complex during chromosomal DNA replication and also acts in a checkpoint pathway during the S phase of the cell cycle to sense stalled DNA replication.
Resumo:
The role of Escherichia coli DNA polymerase (Pol) II in producing or avoiding mutations was investigated by replacing the chromosomal Pol II gene (polB+) by a gene encoding an exonuclease-deficient mutant Pol II (polBex1). The polBex1 allele increased adaptive mutations on an episome in nondividing cells under lactose selection. The presence of a Pol III antimutator allele (dnaE915) reduced adaptive mutations in both polB+ cells and cells deleted for polB (polB delta 1) to below the wild-type level, suggesting that both Pol II and Pol III are synthesizing episomal DNA in nondividing cells but that in wild-type cells Pol III generates the adaptive mutations. The adaptive mutations were mainly -1 frame-shifts occurring in short homopolymeric runs and were similar in wild-type, polB delta 1, and polBex1 strains. Mutations produced by both Pol III and Pol II ex1 were corrected by the mutHLS mismatch repair system.
Resumo:
We describe here a DNA polymerase family highly conserved in Euryarchaeota, a subdomain of Archaea. The DNA polymerase is composed of two proteins, DP1 and DP2. Sequence analysis showed that considerable similarity exists between DP1 and the second subunit of eukaryotic DNA polymerase δ, a protein essential for the propagation of Eukarya, and that DP2 has conserved motifs found in proteins with nucleotide-polymerizing activity. These results, together with our previous biochemical analyses of one of the members, DNA polymerase II (DP1 + DP2) from Pyrococcus furiosus, implicate the DNA polymerases of this family in the DNA replication process of Euryarchaeota. The discovery of this DNA-polymerase family, aside from providing an opportunity to enhance our knowledge of the evolution of DNA polymerases, is a significant step toward the complete understanding of DNA replication across the three domains of life.
Resumo:
Sequence-specific DNA-binding small molecules that can permeate human cells potentially could regulate transcription of specific genes. Multiple cellular DNA-binding transcription factors are required by HIV type 1 for RNA synthesis. Two pyrrole–imidazole polyamides were designed to bind DNA sequences immediately adjacent to binding sites for the transcription factors Ets-1, lymphoid-enhancer binding factor 1, and TATA-box binding protein. These synthetic ligands specifically inhibit DNA-binding of each transcription factor and HIV type 1 transcription in cell-free assays. When used in combination, the polyamides inhibit virus replication by >99% in isolated human peripheral blood lymphocytes, with no detectable cell toxicity. The ability of small molecules to target predetermined DNA sequences located within RNA polymerase II promoters suggests a general approach for regulation of gene expression, as well as a mechanism for the inhibition of viral replication.
Resumo:
RAP74, the large subunit of transcription factor IIF, associates with a preinitiation complex containing RNA polymerase II (pol II) and other general initiation factors. We have mapped the location of RAP74 in close proximity to promoter DNA at similar distances both upstream and downstream of a DNA bend centered on the TATA box. Binding of RAP74 induces a conformational change that affects the position of pol II relative to that of the DNA. This reorganization of the preinitiation complex minimally requires the N-terminal region of RAP74 containing both its RAP30-binding domain and another region necessary for accurate transcription in vitro. We propose a role for RAP74 in controlling the topological organization of the pol II preinitiation complex.
Resumo:
By using site-specific protein-DNA photocrosslinking, we define the positions of TATA-binding protein, transcription factor IIB, transcription factor IIF, and subunits of RNA polymerase II (RNAPII) relative to promoter DNA within the human transcription preinitiation complex. The results indicate that the interface between the largest and second-largest subunits of RNAPII forms an extended, ≈240 Å channel that interacts with promoter DNA both upstream and downstream of the transcription start. By using electron microscopy, we show that RNAPII compacts promoter DNA by the equivalent of ≈50 bp. Together with the published structure of RNAPII, the results indicate that RNAPII wraps DNA around its surface and suggest a specific model for the trajectory of the wrapped DNA.
Resumo:
Purified RNA polymerase II initiated transcription from the yeast CUP1 promoter fused to a C-less cassette if the DNA was negatively supercoiled. Relaxed plasmid was not transcribed. Transcription did not require addition of any other transcription factors. TATA box-binding protein (TBP) was not detectable in the polymerase preparation and the TATA box was not required. Deletion analysis of the CUP1 promoter revealed that a 25-bp element containing the initiation region was sufficient for recognition by polymerase. Two transcription start sites were mapped, one of which is identical to one of the two major start sites observed in vivo. Our observations can be accounted for by using a theoretical analysis of the probability of DNA melting within the plasmid as a function of superhelix density: the CUP1 initiation element is intrinsically unstable to superhelical stress, permitting entry of the polymerase, which then scans the DNA to locate the start site. In support of this analysis, the CUP1 promoter was sensitive to mung bean nuclease. These observations and a previous theoretical analysis of yeast genes support the idea that promoters are stress points within the DNA superhelix. The role of transcription factors might be to mark the promoter and to regulate specific melting of promoter DNA.
Resumo:
Chemotherapeutic drugs can in many ways disrupt the replication machinery triggering apoptosis in cancer cells: some act directly on DNA and others block the enzymes involved in preparing DNA for replication. Cisplatin-based drugs are common as first-line cancer chemotherapics. Another example is etoposide, a molecule that blocks topoisomerase II α leading to the inhibition of dsDNA replication. Despite their efficacy, cancer cells can respond to these treatments over time by overtaking their effects, leading to drug resistance. Chemoresistance events can be triggered by the action of enzymes like DNA polymerase ƞ (Pol η). This polymerase helps also to bypass drug-induced damage in cancer cells, allowing DNA replication and cancer cells proliferation even when cisplatin-based chemotherapeutic drugs are in use. Pol ƞ is a promising drug discovery target, whose inhibition would help in overcoming of drug resistance. This study aims to identify a potent and selective Pol ƞ inhibitor able to improve the efficacy of platinum-based chemotherapeutic drugs. We report the discovery of compound 64 (ARN24964), after an extensive SAR reporting 35 analogs. We evaluated compound 64 on four different cell lines. Interestingly, the molecule is a Pol η inhibitor able to act synergistically with cisplatin. Moreover, we also synthesized a prodrug form that allowed us to improve its stability and the bioavailability. This compound represents an advanced scaffold featuring good potency and DMPK properties. In addition to this central theme, this thesis also describes our efforts in developing and characterize a novel hybrid inhibitor/poison for the human topoisomerase II α enzyme. In particular, we performed specific assays to study the inhibiton of Topoisomesare II α and we evaluated compounds effect on three cancer cell lines. These studies allowed us to identify a compound that is able to inhibit the enzyme with a good pK and a good potency.
Resumo:
BACKGROUND: In mammals, ChIP-seq studies of RNA polymerase II (PolII) occupancy have been performed to reveal how recruitment, initiation and pausing of PolII may control transcription rates, but the focus is rarely on obtaining finely resolved profiles that can portray the progression of PolII through sequential promoter states. RESULTS: Here, we analyze PolII binding profiles from high-coverage ChIP-seq on promoters of actively transcribed genes in mouse and humans. We show that the enrichment of PolII near transcription start sites exhibits a stereotypical bimodal structure, with one peak near active transcription start sites and a second peak 110 base pairs downstream from the first. Using an empirical model that reliably quantifies the spatial PolII signal, gene by gene, we show that the first PolII peak allows for refined positioning of transcription start sites, which is corroborated by mRNA sequencing. This bimodal signature is found both in mouse and humans. Analysis of the pausing-related factors NELF and DSIF suggests that the downstream peak reflects widespread pausing at the +1 nucleosome barrier. Several features of the bimodal pattern are correlated with sequence features such as CpG content and TATA boxes, as well as the histone mark H3K4me3. CONCLUSIONS: We thus show how high coverage DNA sequencing experiments can reveal as-yet unnoticed bimodal spatial features of PolII accumulation that are frequent at individual mammalian genes and reminiscent of transcription initiation and pausing. The initiation-pausing hypothesis is corroborated by evidence from run-on sequencing and immunoprecipitation in other cell types and species.
Resumo:
Stable ternary transcription complexes assembled in vitro, using a HeLa whole-cell extract, have been isolated and visualized by electron microscopy. The formation of these stable complexes on the DNA fragment used as template, the 5' end region of the Xenopus laevis vitellogenin gene B2, depends on factors present in the whole-cell extract, RNA polymerase II and at least two nucleotides. Interestingly, bending in the DNA fragment was frequently observed at the binding site of RNA polymerase II. Dinucleotides that can prime initiation within a short sequence of approximately 10 contiguous nucleotides centered around the initiation site used in vivo, also favour the formation of stable complexes. In addition, pre-initiation complexes were isolated and it was shown that factors in the extract involved in their formation are more abundant than the RNA polymerase II molecules available for binding. The possible implication of this observation relative to the in vivo situation is discussed.
Resumo:
Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.
Resumo:
La transcription, la maturation d’ARN, et le remodelage de la chromatine sont tous des processus centraux dans l'interprétation de l'information contenue dans l’ADN. Bien que beaucoup de complexes de protéines formant la machinerie cellulaire de transcription aient été étudiés, plusieurs restent encore à identifier et caractériser. En utilisant une approche protéomique, notre laboratoire a purifié plusieurs composantes de la machinerie de transcription de l’ARNPII humaine par double chromatographie d’affinité "TAP". Cette procédure permet l'isolement de complexes protéiques comme ils existent vraisemblablement in vivo dans les cellules mammifères, et l'identification de partenaires d'interactions par spectrométrie de masse. Les interactions protéiques qui sont validées bioinformatiquement, sont choisies et utilisées pour cartographier un réseau connectant plusieurs composantes de la machinerie transcriptionnelle. En appliquant cette procédure, notre laboratoire a identifié, pour la première fois, un groupe de protéines, qui interagit physiquement et fonctionnellement avec l’ARNPII humaine. Les propriétés de ces protéines suggèrent un rôle dans l'assemblage de complexes à plusieurs sous-unités, comme les protéines d'échafaudage et chaperonnes. L'objectif de mon projet était de continuer la caractérisation du réseau de complexes protéiques impliquant les facteurs de transcription. Huit nouveaux partenaires de l’ARNPII (PIH1D1, GPN3, WDR92, PFDN2, KIAA0406, PDRG1, CCT4 et CCT5) ont été purifiés par la méthode TAP, et la spectrométrie de masse a permis d’identifier de nouvelles interactions. Au cours des années, l’analyse par notre laboratoire des mécanismes de la transcription a contribué à apporter de nouvelles connaissances et à mieux comprendre son fonctionnement. Cette connaissance est essentielle au développement de médicaments qui cibleront les mécanismes de la transcription.
Resumo:
TFIIH has been implicated in several fundamental cellular processes, including DNA repair, cell cycle progression, and transcription. In transcription, the helicase activity of TFIIH functions to melt promoter DNA; however, the in vivo function of the Cdk7 kinase subunit of TFIIH, which has been hypothesized to be involved in RNA polymerase II (Pol II) phosphorylation, is not clearly understood. Using temperature-sensitive and null alleles of cdk7, we have examined the role of Cdk7 in the activation of Drosophila heat shock genes. Several in vivo approaches, including polytene chromosome immunofluorescence, nuclear run-on assays, and, in particular, a protein-DNA cross-linking assay customized for adults, revealed that Cdk7 kinase activity is required for full activation of heat shock genes, promoter-proximal Pol II pausing, and Pol II-dependent chromatin decondensation. The requirement for Cdk7 occurs very early in the transcription cycle. Furthermore, we provide evidence that TFIIH associates with the elongation complex much longer than previously suspected.
Resumo:
Ecteinascidin 743 (Et-743), which is a novel DNA minor groove alkylator with a unique spectrum of antitumor activity, is currently being evaluated in phase II/III clinical trials. Although the precise molecular mechanisms responsible for the observed antitumor activity are poorly understood, recent data suggests that post-translational modifications of RNA polymerase II Large Subunit (RNAPII LS) may play a central role in the cellular response to this promising anticancer agent. The stalling of an actively transcribing RNAPII LS at Et-743-DNA adducts is the initial cellular signal for transcription-coupled nucleotide excision repair (TC-NER). In this manner, Et-743 poisons TC-NER and produces DNA single strand breaks. Et-743 also inhibits the transcription and RNAPII LS-mediated expression of selected genes. Because the poisoning of TC-NER and transcription inhibition are critical components of the molecular response to Et-743 treatment, we have investigated if changes in RNAPII LS contribute to the disruption of these two cellular pathways. In addition, we have studied changes in RNAPII LS in two tumors for which clinical responses were reported in phase I/II clinical trials: renal cell carcinoma and Ewing's sarcoma. Our results demonstrate that Et-743 induces degradation of the RNAPII LS that is dependent on active transcription, a functional 26S proteasome, and requires functional TC-NER, but not global genome repair. Additionally, we have provided the first experimental data indicating that degradation of RNAPII LS might lead to the inhibition of activated gene transcription. A set of studies performed in isogenic renal carcinoma cells deficient in von Hippel-Lindau protein, which is a ubiquitin-E3-ligase for RNAPII LS, confirmed the central role of RNAPII LS degradation in the sensitivity to Et-743. Finally, we have shown that RNAPII LS is also degraded in Ewing's sarcoma tumors following Et-743 treatment and provide data to suggest that this event plays a role in decreased expression of the Ewing's sarcoma oncoprotein, EWS-Fli1. Altogether, these data implicate degradation of RNAPII LS as a critical event following Et-743 exposure and suggest that the clinical activity observed in renal carcinoma and Ewing's sarcoma may be mediated by disruption of molecular pathways requiring a fully functional RNAPII LS. ^