994 resultados para DMSO - Pharmacological properties
Resumo:
We have used P19 embryonal carcinoma cells as in vitro model for early neurogenesis to study ionotropic P2X and metabotropic P2Y receptor-induced Ca2+ transients and their participation in induction of proliferation and differentiation. In embryonic P19 cells, P2Y(1), P2Y(2) and P2X(4) receptors or P2X-heteromultimers with similar P2X4 pharmacology were responsible for ATP and ATP analogue-induced Ca2+ transients. In neuronal-differentiated cells, P2Y(2), P2Y(6), P2X(2) and possibly P2X(2)/P2X(6) heteromeric receptors were the major mediators of the elevations in intracellular free calcium concentration [Ca2+](i). We have collected evidence for the involvement of metabotropic purinergic receptors in proliferation induction of undifferentiated and neural progenitor cells by using a BrdU-incorporation assay. ATP-, UTP-, ADP-, 2-MeS-ATP- and ADP-beta S-induced proliferation in P19 cells was mediated by P2Y, and P2Y2 receptors as judged from pharmacological profiles of receptor responses. ATP-provoked acceleration of neuronal differentiation, determined by analysis of nestin and neuron-specific enolase gene and protein expression, also resulted from P2Y, and P2Y2 receptor activation. Proliferation- and differentiation-induction involved the activation of inositol-trisphosphate sensitive intracellular Ca2+ stores. (C) 2008 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Piratoxins (PrTX) I and III are phospholipases A(2) (PLA(2)s) or PLA(2) homologue myotoxins isolated from Bothrops pirajai snake venom, which also induce myonecrosis, bactericidal activity against Escherichia coli, disruption of artificial membranes, and edema. PrTX-III is a catalytically active hemolytic and anticoagulant Asp49 PLA(2), while PrTX-I is a Lys49 PLA, homologue, which is catalytically inactive on artificial substrates, but promotes blockade of neuromuscular transmission. Chemical modifications of His, Lys, Tyr, and Trp residues of PrTX-I and PrTX-III were performed, together with cleavage of the N-terminal octapeptide by CNBr and inhibition by heparin and EDTA. The lethality, bactericidal activity, myotoxicity, neuromuscular effect, edema inducing effect, catalytic and anticoagulant activities, and the liposome-disruptive activity of the modified toxins were evaluated. A complex pattern of functional differences between the modified and native toxins was observed. However, in general, chemical modifications that significantly affected the diverse pharmacological effects of the toxins did not influence catalytic or membrane disrupting activities. Analysis of structural changes by circular dichroism spectroscopy demonstrated significant changes in the secondary structure only in the case of N-terminal octapeptide cleavage. These data indicate that PrTX-I and PrTX-III possess regions other than the catalytic site, which determine their toxic and pharmacological activities. (C) 2001 Academic Press.
Resumo:
Angiotensin II (AngII) and bradykinin (BK) derivatives containing the TOAC (2,2,6,6-tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic acid) spin label were synthesized by solid phase methodology. Ammonium hydroxide (pH 10, 50degreesC, 1 h) was the best means for reverting nitroxide protonation occurring during peptide cleavage. EPR spectra yielded rotational correlation times for internally labeled analogs that were nearly twice as large as those of N-terminally labeled analogs. Except for TOAC(1)-AngII and TOAC(0)-BK, which showed high intrinsic activities, other derivatives were inactive in smooth muscle preparations. These active paramagnetic analogs may be useful for conformational studies in solution and in the presence of model and biological membranes. (C) 2002 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A second isoform of the human vesicular monoamine transporter (hVMAT) has been cloned from a pheochromocytoma cDNA library. The contribution of the two transporter isoforms to monoamine storage in human neuroendocrine tissues was examined with isoform-specific polyclonal antibodies against hVMAT1 and hVMAT2. Central, peripheral, and enteric neurons express only VMAT2. VMAT1 is expressed exclusively in neuroendocrine, including chromaffin and enterochromaffin, cells. VMAT1 and VMAT2 are coexpressed in all chromaffin cells of the adrenal medulla. VMAT2 alone is expressed in histamine-storing enterochromaffin-like cells of the oxyntic mucosa of the stomach. The transport characteristics and pharmacology of each VMAT isoform have been directly compared after expression in digitonin-permeabilized fibroblastic (CV-1) cells, providing information about substrate feature recognition by each transporter and the role of vesicular monoamine storage in the mechanism of action of psychopharmacologic and neurotoxic agents in human. Serotonin has a similar affinity for both transporters. Catecholamines exhibit a 3-fold higher affinity, and histamine exhibits a 30-fold higher affinity, for VMAT2. Reserpine and ketanserin are slightly more potent inhibitors of VMAT2-mediated transport than of VMAT1-mediated transport, whereas tetrabenazine binds to and inhibits only VMAT2. N-methyl-4-phenylpyridinium, phenylethylamine, amphetamine, and methylenedioxymethamphetamine are all more potent inhibitors of VMAT2 than of VMAT1, whereas fenfluramine is a more potent inhibitor of VMAT1-mediated monamine transport than of VMAT2-mediated monoamine transport. The unique distributions of hVMAT1 and hVMAT2 provide new markers for multiple neuroendocrine lineages, and examination of their transport properties provides mechanistic insights into the pharmacology and physiology of amine storage in cardiovascular, endocrine, and central nervous system function.
Resumo:
This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MITI, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pia ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1 mu M, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Plants of genus Schinus are native South America and introduced in Mediterranean countries, a long time ago. Some Schinus species have been used in folk medicine, and Essential Oils of Schinus spp. (EOs) have been reported as having antimicrobial, anti-tumoural and anti-inflammatory properties. Such assets are related with the EOs chemical composition that depends largely on the species, the geographic and climatic region, and on the part of the plants used. Considering the difficulty to infer the pharmacological properties of EOs of Schinus species without a hard experimental setting, this work will focus on the development of an Artificial Intelligence grounded Decision Support System to predict pharmacological properties of Schinus EOs. The computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters to the handling of incomplete, unknown, or even self-contradictory information. New clustering methods centered on an analysis of attribute’s similarities were used to distinguish and aggregate historical data according to the context under which it was added to the Case Base, therefore enhancing the prediction process.
Resumo:
Tese de Doutoramento em Biologia de Plantas MAP - Bioplant
Resumo:
Previous studies have shown that venoms of social wasps and bees exhibit strong anticoagulant activity. The present study describes the anticoagulant and fibrinogen-degrading pharmacological properties of the venom of Polybia occidentalis social wasp. The results demonstrated that this venom presented anticoagulant effect, inhibiting the coagulation at different steps of the clotting pathway (intrinsic, extrinsic and common pathway). The venom inhibited platelet aggregation and degraded plasma fibrinogen, possibly containing metal-dependent metalloproteases that specifically cleave the B beta-chain of fibrinogen. In conclusion, fibrinogenolytic and anticoagulant properties of this wasp venom find a potential application in drug development for the treatment of thrombotic disorders. For that, further studies should be carried out in order to identify and isolate the active compounds responsible for these effects. Blood Coagul Fibrinolysis 21: 653-659 (c) 2010 Wolters Kluwer Health | Lippincott Williams & Wilkins.
Resumo:
It has been suggested from a previous study in our laboratory that differences in the pharmacology of the species variants of the noradrenaline transporter (NET) are the result of four non-conservative amino acid exchanges from the total of 26 amino acids that are divergent between the rat NET (rNET) and human NET (hNET). The aim of this study was to examine the effects of changing the rNET at each of these four amino acid residues, which markedly alter local charge distribution, to the amino acid found in hNET. Site-directed mutagenesis was used to create mutant cDNAs from rNET cDNA. The mutant NETs (rK71), rE62K, rK375N and rR612Q), rNET and hNET were expressed in transiently transfected COS-7 cells to determine the effects of the mutations on the differing pharmacological properties of the species variants. The ratios of V-max for noradrenaline uptake and B-max for nisoxetine binding (which are a measure of the turnover number of the transporter, i.e. the number of transport cycles per min) were greater for rNET and rR612Q than for hNET, rK71), rE62K and rK375N. The K-m of noradrenaline was lower for hNET, rK713, rE62K and rK375N than for rNET or rR612Q. There were no differences between the K-i values for inhibition of noradrenaline uptake by nisoxetine for rNET, hNET or the mutants, but the K-i values of cocaine were lower for hNET, rE62K and rR612Q than rNET or rK375N. Hence, the study showed that: (1) the aspartate 7. lysine 62 and asparagine 375 amino acid residues are important in determining the lower substrate translocation by hNET than rNET; (2) the aspartate 7 and lysine 62 residues in the N-terminus of hNET determine the higher affinities of substrates for the hNET than the rNET; and (3) the lysine 62 and glutamine 612 residues in the N- and C-termini, respectively, of hNET Lire determinants of the higher cocaine affinity for the hNET than rNET.
Resumo:
Sapindus mukorossi is an extremely valuable medicinal plant, distributed in tropical and sub-tropical regions of Asia. The aim of present review is to form a short compilation of the phytochemical composition and pharmacological properties of this multipurpose tree. The main phytoconstituents isolated and identified from different parts of this plant are triterpenoidal saponins of oleanane, dammarane and tirucullane type. The structure and chemical names of all the types of triterpenoidal saponins reported in Sapindus mukorossi are included in this review. Many research studies have been conducted to prove the plant's potential as being spermicidal, contraceptive, hepatoprotective, emetic, anti-inflammatory and anti-protozoal. The present review highlights some of the salient pharmacological uses of Sapindus mukorossi.
Resumo:
Promoting environmental and health education is crucial to allow students to make conscious decisions based on scientific criteria. The study is based on the outcomes of an Educational Project implemented with Portuguese students and consisted of several activities, exploring pre-existent Scientific Gardens at the School, aiming to investigate the antibacterial, antitumor and anti-inflammatory properties of plant extracts, with posterior incorporation in soaps and creams. A logo and a webpage were also created. The effectiveness of the project was assessed via the application of a questionnaire (pre- and post-test) and observations of the participants in terms of engagement and interaction with all individuals involved in the project. This project increased the knowledge about autochthonous plants and the potential medical properties of the corresponding plant extracts and increased the awareness about the correct design of scientific experiments and the importance of the use of experimental models of disease. The students regarded their experiences as exciting and valuable and believed that the project helped to improve their understanding and increase their interest in these subjects and in science in general. This study emphasizes the importance of raising students’ awareness on the valorization of autochthonous plants and exploitation of their medicinal properties.
Resumo:
Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels. Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current. Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed. Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.
Resumo:
A rapid decrease in parasitaemia remains the major goal for new antimalarial drugs and thus, in vivo models must provide precise results concerning parasitaemia modulation. Hydroxyethylamine comprise an important group of alkanolamine compounds that exhibit pharmacological properties as proteases inhibitors that has already been proposed as a new class of antimalarial drugs. Herein, it was tested the antimalarial property of new nine different hydroxyethylamine derivatives using the green fluorescent protein (GFP)-expressing Plasmodium bergheistrain. By comparing flow cytometry and microscopic analysis to evaluate parasitaemia recrudescence, it was observed that flow cytometry was a more sensitive methodology. The nine hydroxyethylamine derivatives were obtained by inserting one of the following radical in the para position: H, 4Cl, 4-Br, 4-F, 4-CH3, 4-OCH3, 4-NO2, 4-NH2 and 3-Br. The antimalarial test showed that the compound that received the methyl group (4-CH3) inhibited 70% of parasite growth. Our results suggest that GFP-transfected P. berghei is a useful tool to study the recrudescence of novel antimalarial drugs through parasitaemia examination by flow cytometry. Furthermore, it was demonstrated that the insertion of a methyl group at the para position of the sulfonamide ring appears to be critical for the antimalarial activity of this class of compounds.