857 resultados para DINUCLEAR COPPER
Resumo:
We report magnetic and EPR (electron paramagnetic resonance) spectroscopy studies of [Cu2(flu)4(dmf)2] (flu = flufenamate and dmf = dimethylformamide), which has CuII ions in tetracarboxylate "paddle wheel" dinuclear units. Susceptibility measurements at 10 < T < 275 K allowed the evaluation of an antiferromagnetic intradinuclear exchange coupling J0 = -294 ± 5 cm-1 between CuII ions (Hex = "J0 S1·S2). EPR experiments at 300 K in powder and single-crystals at 9.5 and 34.4 GHz indicated g// = 2.373, g⊥ = 2.073 and zero field splitting parameters D = (-0.334 ± 0.001) cm"1 and E ca. 0. EPR signal intensity measurements at X-band in the range 4 < T < 295 K indicated that J0 = "283 ± 5 cm"1. A higher limit |J´| < 5×10-3 cm-1 for the interdinuclear exchange coupling between neighbor units at ca.14.24 Å was estimated from the angular variation of the single crystal spectra around the magic angles. The results are discussed in terms of the structure of the dinuclear unit and the bridges connecting CuII ions and compared with values reported for similar compounds.
Resumo:
L'activació d'oxigen que té lloc en els éssers vius constitueix una font d'inspiració pel desenvolupament d'alternatives als oxidants tradicionals, considerats altament tòxics i nocius. En aquesta treball s'utilitzen compostos sintètics com a models del centre actiu de proteïnes dinuclears de coure i mononuclears de ferro de tipus no-hemo que participen en l'activació d'oxigen en els éssers vius. Els sistemes dinuclears de coure mostren un centre de tipus coure(III) bis(oxo) que és capaç de dur a terme l'ortho-hidroxilació de fenols de manera similar a la reacció que catalitza la proteïna tirosinasa. Per altra banda, els sistemes de ferro desenvolupats en aquest treball actuen com a models de les dioxigenases de Rieske i poden dur a terme l'hidroxilació estereoespecífica d'alcans i l'epoxidació i cis-dihidroxilació d'olefines utilitzant peròxid d'hidrogen com a agent oxidant. Tot plegat demostra que el desenvolupament de sistemes model constitueix una bona estratègia per l'estudi dels sistemes naturals.
Resumo:
The tridentate Schiff base ligand, 7-amino-4-methyl-5-aza-3-hepten-2-one (HAMAH), prepared by the mono-condensation of 1,2diaminoethane and acetylacetone, reacts with Cu(BF4)(2) center dot 6H(2)O to produce initially a dinuclear Cu(II) complex, [{Cu(AMAH)}(2) (mu-4,4'-bipyJ](BF4)(2) (1) which undergoes hydrolysis in the reaction mixture and finally produces a linear polymeric chain compound, [Cu(acac)(2)(mu-4,4'-bipy)](n) (2). The geometry around the copper atom in compound 1 is distorted square planar while that in compound 2 is essentially an elongated octahedron. On the other hand, the ligand HAMAH reacts with Cu(ClO4)(2) center dot 6H(2)O to yield a polymeric zigzag chain, [{Cu(acac)(CH3OH)(mu-4,4'-bipy)}(ClO4)](n) (3). The geometry of the copper atom in 3 is square pyramidal with the two bipyridine molecules in the cis equatorial positions. All three complexes have been characterized by elemental analysis, IR and UV-Vis spectroscopy and single crystal X-ray diffraction studies. A probable explanation for the different size and shape of the reported polynuclear complexes formed by copper(II) and 4,4'-bipyridine has been put forward by taking into account the denticity and crystal field strength of the blocking ligand as well as the Jahn-Teller effect in copper(II). (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The hexaazamacrocycle 7,22-dimethyl-3,7,11,18,22,26-hexaazatricyclo[26.2.2.2(13,16)] tetratriaconta-1(30), 13,15,28,31,33- hexaene (Me-2[30] pbz(2)N(6)) was synthesized and characterised by single crystal X-ray diffraction. The macrocycle adopts a conformation with the two aromatic rings almost parallel at a distance of ca. 4.24 Angstrom, but displaced relative to each other by ca. 1.51 Angstrom. The protonation constants of this compound and the stability constants of its complexes with Cu2+ and Zn2+, were determined in water - methanol (9 : 1 v/v) at 25 degreesC with ionic strength 0.10 mol dm(-3) in KCl. The potentiometric and spectroscopic studies (NMR of zinc, cadmium and lead complexes, and EPR of the copper complexes) indicate the formation of only dinuclear complexes. The association constants of the dinuclear copper complex with anions ( thiocyanate, terephthalate and glyphosate) and neutral molecules (1,4-benzenedimethanol, p-xylylenediamine and terephthalic acid) were determined at 20 degreesC in methanol. The structural preferences of this ligand and of its dinuclear copper(II) complex with a variety of bridging ligands were evaluated theoretically by molecular mechanics calculations (MM) and molecular dynamics (MD) using quenching techniques.
Resumo:
The synthesis of a range of dinuclear Cu(II) dithiocarbamate (dtc)-based macrocycles and their characterisation are described. By carefully tuning the size of the aromatic spacer, cavities of different dimensions can be designed. The length and flexibility of the chosen spacer group dictates the intermetallic distance and hence the degree of communication between the two metal centres as evidenced by electrochemical and EPR experiments. This is illustrated by crystallographic evidence that show the macrocycles can host guests (such as CH2Cl2) or can fold and form unexpected Cu(I) dtc clusters.
Resumo:
A diphenoxido-bridged dinuclear copper(II) complex, [Cu2L2(ClO4)(2)] (1), has been synthesized using a tridentate reduced Schiff base ligand, 2-[[2-(diethylamino)-ethylamino]methyl]phenol (HL). The addition of triethylamine to the methanolic solution of this complex produced a novel triple bridged (double phenoxido and single hydroxido) dinuclear copper(II) complex, [Cu2L2(OH)]ClO4 (2). Both complexes 1 and 2 were characterized by X-ray structural analyses, variable-temperature magnetic susceptibility measurements, and spectroscopic methods. In 1, the two phenoxido bridges are equatorial-equatorial and the species shows strong antiferromagnetic coupling with J = -615.6(6.1) cm(-1). The inclusion of the equatorial-equatorial hydroxido bridge in 2 changes the Cu center dot center dot center dot Cu distance from 3.018 angstrom (avg.) to 2.798 angstrom (avg.), the positions of the phenoxido bridges to axial-equatorial, and the magnetic coupling to ferromagnetic with J = 50.1(1.4) cm(-1). Using 3,5-di-tert-butylcatechol as the substrate, the catecholase activity of the complexes has been studied in a methanol solution; compound 2 shows higher catecholase activity (k(cat) = 233.4 h(-1)) than compound 1 (k(cat) = 93.6 h(-1)). Both complexes generate identical species in solution, and they are interconvertible simply by changing the pH of their solutions. The higher catecholase activity of 2 seems to be due to the presence of the OH group, which increases the pH of its solution.
Resumo:
Two phenoxo bridged dinuclear Cu(II) complexes, [Cu2L2(NO2)(2)] (1) and [Cu2L2(NO3)(2)] (2) have been synthesized using the tridentate reduced Schiff-base ligand 2-[(2-dimethylamino-ethylamino)-methyl]-phenol (HL). The complexes have been characterized by X-ray structural analyses and variable-temperature magnetic susceptibility measurements. The structures of the two compounds are very similar having the same tridentate chelating ligand (L) and mono-dentate anionic ligand nitrite for 1 and nitrate for 2. In both complexes Cu(II) is penta-coordinated but the square pyramidal geometry of the copper ions is severely distorted (Addison parameter (tau) = 0.33) in 1 while the distortion is quite small (average tau = 0.11) in 2. These differences have marked effect on the magnetic properties of two compounds. Although both are antiferromagnetically coupled, the coupling constants (J = -140.8 and -614.7 cm (1) for 1 and 2, respectively) show that the coupling is much stronger in 2.
Resumo:
The complexes: [Cu(N 3) 2(N,N-diEten)] 2, [Cu(N 3) 2(tmeen)] 2, [Cu(N 3)(NCO)(N,N-diEten)] 2, [Cu(N 3) 2(N,N′-diMeen)] 2 and [Cu(N 3)(NCO)(tmeen)] 2 were prepared, characterized and their electrochemical behavior was investigated by cyclic voltammetry and controlled potential electrolysis. Cyclic voltammograms for all complexes studied are similar and exhibit one pair of current peaks in the range of -0.65 to +0.0 V. The number of electrons obtained from controlled potential electrolysis at ca. -0.55 V for all compounds was 1.8 ≤ n ≤ 2.1, indicating that both copper(II) metallic centres in the molecule were reduced to copper (I). Comparing the peak potential values for these complexes one can observe that the redox process corresponding to copper(II)/copper(I) couple is slightly influenced by the σ-basicity of the ligands. © 1997 Soc. Bras. Química.
Resumo:
Two novel dinuclear complexes involving the antihypertensive drug valsartan and copper(II) ion have been prepared in water and DMSO. The complex compositions were determined as: [Cu(vals)(H(2)O)(3)](2)center dot 6H(2)O and [Cu(vals)(H(2)O)(2)DMSO](2)center dot 2H(2)O. They were thoroughly characterized by elemental and thermal analysis, spectrophotometric titrations and UV-visible, diffuse reflectance, FTIR, Raman and EPR spectroscopies. No effect of the ligand on two tested osteoblastic cell lines in culture (one normal MOT3E1 and one tumoral UMR106) was observed in concentrations up to 100 mu M. Higher concentrations of Valsartan are required to induce cytotoxicity in both cell lines. The antiproliferative effect of the tested complex ([Cu(vals) (H(2)O)(3)](2)center dot 6H(2)O) in a dose-response manner, was higher in the UMR106 osteoblastic cell line than that of the MC3T3E1 normal line at concentrations >= 100 mu M. Morphological alterations are in accordance with proliferative observations. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Cytochrome oxidase is a membrane protein complex that catalyzes reduction of molecular oxygen to water and utilizes the free energy of this reaction to generate a transmembrane proton gradient during respiration. The electron entry site in subunit II is a mixed-valence dinuclear copper center in enzymes that oxidize cytochrome c. This center has been lost during the evolution of the quinoloxidizing branch of cytochrome oxidases but can be restored by engineering. Herein we describe the crystal structures of the periplasmic fragment from the wild-type subunit II (CyoA) of Escherichia coli quinol oxidase at 2.5-A resolution and of the mutant with the engineered dinuclear copper center (purple CyoA) at 2.3-A resolution. CyoA is folded as an 11-stranded mostly antiparallel beta-sandwich followed by three alpha-helices. The dinuclear copper center is located at the loops between strands beta 5-beta 6 and beta 9-beta 10. The two coppers are at a 2.5-A distance and symmetrically coordinated to the main ligands that are two bridging cysteines and two terminal histidines. The residues that are distinct in cytochrome c and quinol oxidases are around the dinuclear copper center. Structural comparison suggests a common ancestry for subunit II of cytochrome oxidase and blue copper-binding proteins.
Resumo:
The synthesis, characterization and copper(II) coordination chemistry of three new cyclic peptide ligands, PatJ(1) (cyclo-(Ile -Thr- (Gly)Thz-lle-Thr(Gly)Thz)), PatJ(2) (cyclo-(Ile-Thr(Gly)Thz-(D)-Ile-Thr-(Gly)Thz)), and PatL (cyclo-(Ile-Ser-(Gly)Thz-Ile-Ser(Gly)Thz)) are reported. All of these cyclic peptides and PatN (cyclo-(Ile-Ser(Gly)Thz-Ile-Thr-(Gly)Thz)) are derivatives of patellamide A and have a [24]azacrown-8 macrocyclic structure. All four synthetic cyclic peptides have two thiazole rings but, in contrast to patellamide A, no oxazoline rings. The molecular structure of PatJ1, determined by X-ray crystallography, has a saddle conformation with two close-to-co-parallel thiazole rings, very similar to the geometry of patellamide D. The two coordination sites of PatJ1 with thiazole-N and amide-N donors are each well preorganized for transition metal ion binding. The coordination of copper(II) was monitored by UV/Vis spectroscopy, and this reveals various (meta)stable mono- and dinuclear copper(II) complexes whose stoichiometry was confirmed by mass spectra. Two types of dinuclear copper(II) complexes, [Cu-2(H4L)(OH2)(n)](2+) (n = 6, 8) and [Cu-2(H4L)(OH2)(n)] (n=4, 6; L=PatN, PatL, PatJ1, PatJ2) have been identified and analyzed structurally by EPR spectroscopy and a combination of spectra simulations and molecular mechanics calculations (MM-EPR). The four structures are similar to each other and have a saddle conformation, that is, derived from the crystal structure of PatJ(1) by a twist of the two thiozole rings. The small but significant structural differences are characterized by the EPR simulations.
Resumo:
A dinuclear copper(II) complex, (mu2-MeOH)bis(mu(2)-phenoxide)dicopper complex with N-(3-aminopropyl)salicylaidimine, has been synthesised and characterised by X-ray structure determination. Variable temperature magnetic susceptibility measurement shows that it is strongly antiferromagnetically coupled. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Two mononuclear and one dinuclear copper(II) complexes, containing neutral tetradentate NSSN type ligands, of formulation [Cu-II(L-1)Cl]ClO4 (1), [Cu-II(L-2)Cl]ClO4 (2) and [Cu-2(II)(L-3)(2)Cl-2](ClO4)(2) (3) were synthesized and isolated in pure form [where L-1 = 1,2-bis(2-pyridylmethylthio)ethane, L-2 = 1,3-bis(2-pyridylmethylthio)propane and L-3 = 1,4-bis(2-pyridylmethylthio)butane]. All these green colored copper(II) complexes were characterized by physicochemical and spectroscopic methods. The dinuclear copper(II) complex 3 changed to a colorless dinuclear copper(I) species of formula [Cu-2(1)(L-3)(2)](ClO4)(2),0.5H(2)O (4) in dimethylformamide even in the presence of air at ambient temperature, while complexes I and 2 showed no change under similar conditions. The solid-state structures of complexes 1, 2 and 4 were established by X-ray crystallography. The geometry about the copper in complexes 1 and 2 is trigonal bipyramidal whereas the coordination environment about the copper(I) in dinuclear complex 4 is distorted tetrahedral. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Three new homodinuclear complexes containing substituted phenolate-type ligands based on the N(5)O(2) donor (2-(N,N-Bis(2-pyridylmethyl)aminomethyl)-6-(N`,N`-(2-hydroxybenzyl)(2-pyridylmethyl))aminomethyl)-4-methylphenol (H(2)L-H) were synthesized and characterized by X-ray crystallography. Potentiometric titration studies in 70% (v/v) aqueous ethanol show that all three complexes exhibit a common {Cu(II)(mu-phenoxo)(mu-OH)Cu(II)(OH)} core in solution. Kinetic studies on the oxidation reaction of 3,5-di-tert-butylcatechol revealed that the catalytic activity of the metal complexes increases toward the ligand containing an electron-donating group. In addition, these complexes also carried out DNA cleavage by hydrolytic and oxidative pathways. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Three novel acetato-bridged dinuclear copper(II) complexes with 5-nitroimidazoles (CuAcNtrim) and the known copper-acetato-metronidazole have been prepared by an environment-friendly route and spectroscopically characterized. The CuAcNtrim compounds of formula [Cu(2)(mu-O(2)CCH(3))(4)Ntrim(2)], where Ntrim = metronidazole (1), secnidazole (2), tinidazole (3) or nimorazole (4), exhibit dimeric copper-acetato paddle-wheel structures with Ntrim axial ligands coordinated to copper(II) ions through the N(3) atoms of the imidazole rings. EPR data indicate antiferromagnetic behavior for this novel series of copper complexes. The constant coupling has been found to decrease along with the increasing of basicity of the Ntrim axial ligand. The CuAcNtrim complexes and the correspondent Ntrim parent drugs have shown radiosensitizer properties for Hep2 (human larynx cancer) cell line in vitro. The best enhancement of radiosensitizer activity upon coordination of the Ntrim drug to copper(II) has been found for the nimorazole compound which has the strongest Cu-Ntrim bond and exhibits the highest lipophilicity within the series of CuAcNtrim complexes. (C) 2010 Elsevier B.V. All rights reserved.