999 resultados para Cyclic Deformation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cyclic deformation behavior Of ultrafine-grained (UFG) Ni samples synthesized by the electrodeposition method was studied. Different from those made by severely plastic deformation, the UFG samples used in this study are characterized by large-angle grain boundaries. Behaviors from nanocrystalline Ni and coarse-grained Ni samples were compared with that Of Ultrafine-grained Ni. With in situ neutron diffraction. unusual evolutions of residual lattice strains as well as cyclic hardening and softening behavior were demonstrated during the cyclic deformation. The microstructural changes investigated by TEM are discussed with respect to the unusual lattice strain and cyclic hardening/softening. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NiTi wires of 0.5 mm diameter were laser welded using a CW 100-W fiber laser in an argon shielding environment with or without postweld heat-treatment (PWHT). The microstructure and the phases present were studied by scanning-electron microscopy (SEM), transmission-electron microscopy (TEM), and X-ray diffractometry (XRD). The phase transformation behavior and the cyclic stress–strain behavior of the NiTi weldments were studied using differential scanning calorimetry (DSC) and cyclic tensile testing. TEM and XRD analyses reveal the presence of Ni4Ti3 particles after PWHT at or above 623 K (350 °C). In the cyclic tensile test, PWHT at 623 K (350 °C) improves the cyclic deformation behavior of the weldment by reducing the accumulated residual strain, whereas PWHT at 723 K (450 °C) provides no benefit to the cyclic deformation behavior. Welding also reduces the tensile strength and fracture elongation of NiTi wires, but the deterioration could be alleviated by PWHT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Post-weld heat-treatment (PWHT) has been established as one of the cost-effective ways to improve the functional properties, namely shape memory and super-elastic effects (SME and SE), of laser-welded NiTi alloys. However, the functional performance of the laser-welded joint at different working temperatures has not been explored yet. The purpose of this study is to investigate the effect of different working temperatures on the functional properties of the laser-welded NiTi alloys before and after PWHT by applying cyclic deformation tests. Two laser-welded samples: as-welded and heat-treated sample (after PWHT at 350 oC or 623 K) were tested in this work at room temperature, 50 oC (or 323 K) and 75 oC (or 348 K) respectively. The samples were cyclically loaded and unloaded for 10 cycles up to 4 % strain. The critical stress to induce the martensitic transformation and the residual strain after the cyclic tests were recorded. The results indicate that the heat-treated sample exhibited better functional properties than the as-welded sample at room temperature and 50 oC (or 323 K). However, both the as-welded and heat-treated samples failed in the cyclic tests at 75 oC (or 348 K). These findings are important to determine the feasible working temperature range for the laser-welded NiTi components to exhibit desirable functional properties in engineering applications involving cyclic loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fatigue properties of multiphase steels are an important consideration in the automotive industry. The different microstructural phases present in these steels can influence the strain life and cyclic stabilized strength of the material due to the way in which these phases accommodate the applied cyclic strain. Fully reversed strain-controlled low-cycle fatigue tests have been used to determine the mechanical fatigue performance of a dual-phase (DP) 590 and transformation-induced plasticity (TRIP) 780 steel, with transmission electron microscopy (TEM) used to examine the deformed microstructures. It is shown that the higher strain life and cyclic stabilized strength of the TRIP steel can be attributed to an increased yield strength. Despite the presence of significant levels of retained austenite in the TRIP steel, both steels exhibited similar cyclic softening behavior at a range of strain amplitudes due to comparable ferrite volume fractions and yielding characteristics. Both steels formed low-energy dislocation structures in the ferrite during cyclic straining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine-grained aluminium was produced by cryo-rolling and their deformation response under cyclic loading was investigated. Shear banding and grain coarsening were recognized as the main damage mechanism reducing their performance under cyclic loading. However presence of precipitates in ultrafine-grained A1 can actively hinder the operation of cyclic softening mechanisms and increase microstructural stability under cyclic loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Application of high temperature superconductor Bi2Sr2Ca2Cu3Ox. (Bi-2223) compound embedded in an Ag matrix requires the knowledge of critical current as a function of mechanical properties. Commercial tapes available in different types have been developed in industrial production scale in which a combination of small diameter filaments, long tape lengths and a ductile matrix results in a conductor with low crack formation and good tolerance against strain. The measurement of critical current and the evaluation of n-index from V-I characteristic curves of Bi-2223/Ag composite tapes subjected to an initial bending strain as a function of number of thermal cycles were done for two types of Bi-2223/Ag composite tapes: with and without steel tape reinforcement. The results showed that tapes with reinforcement presented small critical current degradation as a function of the number of thermal cycles whereas tapes without reinforcement exhibited steadily critical current degradation caused by the propagation of cracks. The n-index followed the same critical current behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine-grained (UFG) metals produced by equal channel angular pressing (ECAP) exhibit outstanding mechanical properties. They show high strength under monotonic loading as well as strongly enhanced fatigue lives in the Wöhler S-N-plot compared to their coarse grained (CG) counterparts. It could be shown that the fatigue lives can be significantly enhanced further by applying backpressure during ECAP. Besides the positive effect of backpressure on the processability of hard to deform materials via ECAP, the hydrostatic stress induced by backpressure also influences the mechanical properties under monotonic and cyclic loading. Therefore the influence of backpressure on ECAPed Cu99.5 and on the ECAPed aluminum alloy AA5754 was investigated. It is shown that backpressure has no effect on the hardness and grain size in Cu99.5 but changes the grain boundary misorientation to higher fractions of low angle grain boundaries. Also the temperature dependency of the yield strength as well as the hardening behavior under monotonic compression is affected. The cyclic deformation behavior of Cu99.5 is not strongly influenced by backpressure, but the mean stress level changes drastically. The fatigue life increases with the application of backpressure at low plastic amplitudes due to a change in the crack initiation and propagation. Aim of this work is the investigation of the influence of backpressure during equal channel angular pressing (ECAP) on the mechanical properties under monotonic and cyclic loading. Therefore we performed hardness measurements, compression, and fatigue tests on ECAPed Cu99.5 and AA5754. The results are discussed in terms of microstructure and relevant deformation and damage mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The data is derived from an investigation into the microstructural changes of nanostructure Al (produced by cryo-rolling) in response to cyclic loading using electron microscopy and EBSD. The aim is to develop a better understanding of the deformation mechanisms in ultrafine grained/nanostructure metals under cyclic loading conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Total strain controlled low cycle fatigue tests on 316L(N) stainless steel have been conducted in air at various strain rates in the temperature range of 773-873 K to identify the operative time-dependent mechanisms and to understand their influence on the cyclic deformation and fracture behaviour of the alloy. The cyclic stress response at all the testing conditions was marked by an initial hardening followed by stress saturation. A negative strain rate stress response is observed under specific testing conditions which is attributed to dynamic strain ageing (DSA). Transmission electron microscopy studies reveal that there is an increase in the dislocation density and enhanced slip planarity in the DSA regime. Fatigue life is found to decrease with a decrease in strain rate. The degradation in fatigue resistance is attributed to the detrimental effects associated with DSA and oxidation. Quantitative measurement of secondary cracks indicate that both transgranular and intergranular cracking are accelerated predominantly under conditions conducive to DSA.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The low cycle fatigue behaviour of precipitation strengthened nickel-base superalloy 720Li containing a low concentration of interstitial carbon and boron was studied at 25, 400 and 650 degrees C. Cyclic stress response at all temperatures was stable under fully reversed constant total strain amplitude (Delta epsilon/2) when Delta epsilon/2 <= 0.6%. At Delta epsilon/2 > 0.6%, cyclic hardening was followed by softening, until fracture at 25 and 650 degrees C. At 400 degrees C, however, cyclic stress plateaued after initial hardening. Dislocation-dislocation interactions and precipitate shearing were the micromechanisms responsible for the cyclic hardening and softening, respectively. The number of reversals to failure vs. plastic strain amplitude plot exhibits a bilinear Coffin-Manson relation. Transmission electron microscopy substructures revealed that planar slip was the major deformation mode under the conditions examined. However, differences in its distribution were observed to be the cause for the bilinearity in fatigue lives. The presence of fine deformation twins at low Delta epsilon/2 at 650 degrees C suggests the role of twinning in homogenization of cyclic deformation.