992 resultados para Current source converter
Resumo:
This paper presents a three-phase three-level fast battery charger for electric vehicles (EVs) based in a current-source converter (CSC). Compared with the traditional voltage-source converters used for fast battery chargers, the CSC can be seen as a natural buck-type converter, i.e., the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. Moreover, using the CSC it is not necessary to use a dc-dc back-end converter in the battery side, and it is also possible to control the grid current in order to obtain a sinusoidal waveform, and in phase with the power grid voltage (unitary power factor). Along the paper is described in detail the proposed CSC for EVs fast battery charging systems: the circuit topology, the power control theory, the current control strategy and the grid synchronization algorithm. Several simulation results of the EV fast battery charger operating with a maximum power of 50 kW are presented.
Resumo:
This paper presents a comprehensive comparison of a current-source converter and a voltage-source converter for three-phase electric vehicle (EV) fast battery chargers. Taking into account that the current-source converter (CSC) is a natural buck-type converter, the output voltage can assume a wide range of values, which varies between zero and the maximum instantaneous value of the power grid phase-to-phase voltage. On the other hand, taking into account that the voltage-source converter (VSC) is a natural boost-type converter, the output voltage is always greater than the maximum instantaneous value of the power grid phase-to-phase voltage, and consequently, it is necessary to use a dc-dc buck-type converter for applications as EV fast battery chargers. Along the paper is described in detail the principle of operation of both the CSC and the VSC for EV fast chargers, as well as the main equations of the power theory and current control strategies. The comparison between both converters is mainly established in terms of the total harmonic distortion of the grid current and the estimated efficiency for a range of operation between 10 kW and 50 kW.
Resumo:
This work is related to the improvement of the dynamic performance of the Buck converter by means of introducing an additional power path that virtually increase s the output capacitance during transients, thus improving the output impedance of the converter. It is well known that in VRM applications, with wide load steps, voltage overshoots and undershoots ma y lead to undesired performance of the load. To solve this problem, high-bandwidth high-switching frequency power converter s can be applied to reduce the transient time or a big output capacitor can be applied to reduce the output impedance. The first solution can degrade the efficiency by increasing switching losses of the MOSFETS, and the second solution is penalizing the cost and size of the output filter. The additional energy path, as presented here, is introduced with the Output Impedance Correction Circuit (OICC) based on the Controlled Current Source (CCS). The OICC is using CCS to inject or extract a current n - 1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. This feature allows the usage of a low frequency Buck converter with smaller capacitor but satisfying the dynamic requirements.
Resumo:
VSC converters are becoming more prevalent for HVDC applications. Two circuits are commercially available at present, a traditional six-switch, PWM inverter, implemented using series connected IGBTs - ABBs HVDC Light®, and the other a modular multi-level converter (MMC) - Siemens HVDC-PLUS. This paper presents an alternative MMC topology, which utilises a novel current injection technique, and exhibits several desirable characteristics.
Resumo:
Solar photovoltaic systems are an increasing option for electricity production, since they produce electrical energy from a clean renewable energy resource, and over the years, as a result of the research, their efficiency has been increasing. For the interface between the dc photovoltaic solar array and the ac electrical grid is necessary the use of an inverter (dc-ac converter), which should be optimized to extract the maximum power from the photovoltaic solar array. In this paper is presented a solution based on a current-source inverter (CSI) using continuous control set model predictive control (CCS-MPC). All the power circuits and respective control systems are described in detail along the paper and were tested and validated performing computer simulations. The paper shows the simulation results and are drawn several conclusions.
Resumo:
This paper presents the proposal of a three phase current source shunt active power filter (CS-SAPF) with photovoltaic grid interface. The proposed system combines the compensation of reactive power and harmonics with the injection of energy from a solar photovoltaic array into the electrical power grid. The proposed equipment presents the advantage of giving good use to the current source inverter, even when the solar photovoltaic array is not producing energy. The paper describes the control system of the CS SAPF, the energy injection control strategy, and the current harmonics and power factor compensation strategy. Simulation results to assess the performance of the proposed system are also presented.
Resumo:
This paper presents a new methodology for the operation and control of a single-phase current-source (CS) Boost Inverter, considering that the conventional CS boost inverter has a right-half-plane (RHP) zero in its control-to-output transfer function, and this RHP zero causes the known non-minimum-phase effects. In this context, a special design with low boost inductance and a multi-loop control is developed in order to assure stable and very fast dynamics. Furthermore, the proposed inverter presents output voltage with very low total harmonic distortion (THD), reduced components and high power density. Therefore, this paper presents the inverter operation, the proposed control technique, the main simulation results and a prototype in order to demonstrate the feasibility of the proposal. © 2011 IEEE.
Resumo:
Although maximum power point tracking (MPPT) is crucial in the design of a wind power generation system, the necessary control strategies should also be considered for conditions that require a power reduction, called de-loading in this paper. A coordinated control scheme for a proposed current source converter (CSC) based DC wind energy conversion system is presented in this paper. This scheme combines coordinated control of the pitch angle, a DC load dumping chopper and the DC/DC converter, to quickly achieve wind farm de-loading. MATLAB/Simulink simulations and experiments are used to validate the purpose and effectiveness of the control scheme, both at the same power level. © 2013 IEEE.
Resumo:
Pulsewidth-modulated (PWM) rectifier technology is increasingly used in industrial applications like variable-speed motor drives, since it offers several desired features such as sinusoidal input currents, controllable power factor, bidirectional power flow and high quality DC output voltage. To achieve these features,however, an effective control system with fast and accurate current and DC voltage responses is required. From various control strategies proposed to meet these control objectives, in most cases the commonly known principle of the synchronous-frame current vector control along with some space-vector PWM scheme have been applied. Recently, however, new control approaches analogous to the well-established direct torque control (DTC) method for electrical machines have also emerged to implement a high-performance PWM rectifier. In this thesis the concepts of classical synchronous-frame current control and DTC-based PWM rectifier control are combined and a new converter-flux-based current control (CFCC) scheme is introduced. To achieve sufficient dynamic performance and to ensure a stable operation, the proposed control system is thoroughly analysed and simple rules for the controller design are suggested. Special attention is paid to the estimationof the converter flux, which is the key element of converter-flux-based control. Discrete-time implementation is also discussed. Line-voltage-sensorless reactive reactive power control methods for the L- and LCL-type line filters are presented. For the L-filter an open-loop control law for the d-axis current referenceis proposed. In the case of the LCL-filter the combined open-loop control and feedback control is proposed. The influence of the erroneous filter parameter estimates on the accuracy of the developed control schemes is also discussed. A newzero vector selection rule for suppressing the zero-sequence current in parallel-connected PWM rectifiers is proposed. With this method a truly standalone and independent control of the converter units is allowed and traditional transformer isolation and synchronised-control-based solutions are avoided. The implementation requires only one additional current sensor. The proposed schemes are evaluated by the simulations and laboratory experiments. A satisfactory performance and good agreement between the theory and practice are demonstrated.
Resumo:
Line converters have become an attractive AC/DC power conversion solution in industrial applications. Line converters are based on controllable semiconductor switches, typically insulated gate bipolar transistors. Compared to the traditional diode bridge-based power converters line converters have many advantageous characteristics, including bidirectional power flow, controllable de-link voltage and power factor and sinusoidal line current. This thesis considers the control of the lineconverter and its application to power quality improving. The line converter control system studied is based on the virtual flux linkage orientation and the direct torque control (DTC) principle. A new DTC-based current control scheme is introduced and analyzed. The overmodulation characteristics of the DTC converter are considered and an analytical equation for the maximum modulation index is derived. The integration of the active filtering features to the line converter isconsidered. Three different active filtering methods are implemented. A frequency-domain method, which is based on selective harmonic sequence elimination, anda time-domain method, which is effective in a wider frequency band, are used inharmonic current compensation. Also, a voltage feedback active filtering method, which mitigates harmonic sequences of the grid voltage, is implemented. The frequency-domain and the voltage feedback active filtering control systems are analyzed and controllers are designed. The designs are verified with practical measurements. The performance and the characteristics of the implemented active filtering methods are compared and the effect of the L- and the LCL-type line filteris discussed. The importance of the correct grid impedance estimate in the voltage feedback active filter control system is discussed and a new measurement-based method to obtain it is proposed. Also, a power conditioning system (PCS) application of the line converter is considered. A new method for correcting the voltage unbalance of the PCS-fed island network is proposed and experimentally validated.
Resumo:
This work is related to the output impedance improvement of a Multiphase Buck converter with Peak Current Mode Control (PCMC) by means of introducing an additional power path that virtually increases the output capacitance during transients. Various solutions that can be employed to improve the dynamic behavior of the converter system exist, but nearly all solutions are developed for a Single Phase Buck converter with Voltage Mode Control (VMC), while in the VRM applications, due to the high currents, the system is usually implemented as a Multiphase Buck Converter with Current Mode Control. The additional energy path, as presented here, is introduced with the Output Impedance Correction Circuit (OICC) based on the Controlled Current Source (CCS). The OICC is used to inject or extract a current n-1 times larger than the output capacitor current, thus virtually increasing n times the value of the output capacitance during the transients. Furthermore, this work extends the OICC concept to a Multiphase Buck Converter system while comparing proposed solution with the system that has n times bigger output capacitor. In addition, the OICC is implemented as a Synchronous Buck Converter with PCMC, thus reducing its influence on the system efficiency.
Resumo:
This paper provides a discussion on future direct current (DC) network development in terms of system protection under DC-side fault scenarios. The argument between appropriate DC circuit breaker and new DC fault-tolerant converters is discussed after a review on DC technology development and bottleneck issues that require proper solutions. The overcurrent/cost curve of power-electronic DC circuit breakers (CB) superimposed to voltage-source converter (VSC) systems is derived and compared with other possible fault-tolerant power conversion options. This in-advance planning of protection capability is essential for the future development of DC networks.
Resumo:
This paper presents a small-area CMOS current-steering segmented digital-to-analog converter (DAC) design intended for RF transmitters in 2.45 GHz Bluetooth applications. The current-source design strategy is based on an iterative scheme whose variables are adjusted in a simple way, minimizing the area and the power consumption, and meeting the design specifications. A theoretical analysis of static-dynamic requirements and a new layout strategy to attain a small-area current-steering DAC are included. The DAC was designed and implemented in 0.35 mu m CMOS technology, requiring an active area of just 200 mu m x 200 mu m. Experimental results, with a full-scale output current of 700 mu A and a 3.3 V power supply, showed a spurious-free dynamic range of 58 dB for a 1 MHz output sine wave and sampling frequency of 50 MHz, with differential and integral nonlinearity of 0.3 and 0.37 LSB, respectively.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.
Resumo:
Fast Field Cycling (FFC) Nuclear Magnetic Resonance (NMR) relaxometers require controlled current sources in order to get accurate flux density with respect to its magnet. The main elements of the proposed solution are a power semiconductor, a DC voltage source and the magnet. The power semiconductor is commanded in order to get a linear control of the flux density. To implement the flux density control, a Hall Effect sensor is used. Furthermore, the dynamic behavior of the current source is analyzed and compared when using a PI controller and a PD2I controller.