996 resultados para Cure Model


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real dataset.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, for the first time, we propose the negative binomial-beta Weibull (BW) regression model for studying the recurrence of prostate cancer and to predict the cure fraction for patients with clinically localized prostate cancer treated by open radical prostatectomy. The cure model considers that a fraction of the survivors are cured of the disease. The survival function for the population of patients can be modeled by a cure parametric model using the BW distribution. We derive an explicit expansion for the moments of the recurrence time distribution for the uncured individuals. The proposed distribution can be used to model survival data when the hazard rate function is increasing, decreasing, unimodal and bathtub shaped. Another advantage is that the proposed model includes as special sub-models some of the well-known cure rate models discussed in the literature. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes. We analyze a real data set for localized prostate cancer patients after open radical prostatectomy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article, we propose a new Bayesian flexible cure rate survival model, which generalises the stochastic model of Klebanov et al. [Klebanov LB, Rachev ST and Yakovlev AY. A stochastic-model of radiation carcinogenesis - latent time distributions and their properties. Math Biosci 1993; 113: 51-75], and has much in common with the destructive model formulated by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)]. In our approach, the accumulated number of lesions or altered cells follows a compound weighted Poisson distribution. This model is more flexible than the promotion time cure model in terms of dispersion. Moreover, it possesses an interesting and realistic interpretation of the biological mechanism of the occurrence of the event of interest as it includes a destructive process of tumour cells after an initial treatment or the capacity of an individual exposed to irradiation to repair altered cells that results in cancer induction. In other words, what is recorded is only the damaged portion of the original number of altered cells not eliminated by the treatment or repaired by the repair system of an individual. Markov Chain Monte Carlo (MCMC) methods are then used to develop Bayesian inference for the proposed model. Also, some discussions on the model selection and an illustration with a cutaneous melanoma data set analysed by Rodrigues et al. [Rodrigues J, de Castro M, Balakrishnan N and Cancho VG. Destructive weighted Poisson cure rate models. Technical Report, Universidade Federal de Sao Carlos, Sao Carlos-SP. Brazil, 2009 (accepted in Lifetime Data Analysis)] are presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we develop a flexible cure rate survival model by assuming the number of competing causes of the event of interest to follow a compound weighted Poisson distribution. This model is more flexible in terms of dispersion than the promotion time cure model. Moreover, it gives an interesting and realistic interpretation of the biological mechanism of the occurrence of event of interest as it includes a destructive process of the initial risk factors in a competitive scenario. In other words, what is recorded is only from the undamaged portion of the original number of risk factors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A number of authors have studies the mixture survival model to analyze survival data with nonnegligible cure fractions. A key assumption made by these authors is the independence between the survival time and the censoring time. To our knowledge, no one has studies the mixture cure model in the presence of dependent censoring. To account for such dependence, we propose a more general cure model which allows for dependent censoring. In particular, we derive the cure models from the perspective of competing risks and model the dependence between the censoring time and the survival time using a class of Archimedean copula models. Within this framework, we consider the parameter estimation, the cure detection, and the two-sample comparison of latency distribution in the presence of dependent censoring when a proportion of patients is deemed cured. Large sample results using the martingale theory are obtained. We applied the proposed methodologies to the SEER prostate cancer data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Historically, the cure rate model has been used for modeling time-to-event data within which a significant proportion of patients are assumed to be cured of illnesses, including breast cancer, non-Hodgkin lymphoma, leukemia, prostate cancer, melanoma, and head and neck cancer. Perhaps the most popular type of cure rate model is the mixture model introduced by Berkson and Gage [1]. In this model, it is assumed that a certain proportion of the patients are cured, in the sense that they do not present the event of interest during a long period of time and can found to be immune to the cause of failure under study. In this paper, we propose a general hazard model which accommodates comprehensive families of cure rate models as particular cases, including the model proposed by Berkson and Gage. The maximum-likelihood-estimation procedure is discussed. A simulation study analyzes the coverage probabilities of the asymptotic confidence intervals for the parameters. A real data set on children exposed to HIV by vertical transmission illustrates the methodology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this paper is to develop a Bayesian analysis for the right-censored survival data when immune or cured individuals may be present in the population from which the data is taken. In our approach the number of competing causes of the event of interest follows the Conway-Maxwell-Poisson distribution which generalizes the Poisson distribution. Markov chain Monte Carlo (MCMC) methods are used to develop a Bayesian procedure for the proposed model. Also, some discussions on the model selection and an illustration with a real data set are considered.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we propose a cure rate survival model by assuming the number of competing causes of the event of interest follows the Geometric distribution and the time to event follow a Birnbaum Saunders distribution. We consider a frequentist analysis for parameter estimation of a Geometric Birnbaum Saunders model with cure rate. Finally, to analyze a data set from the medical area. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many recent survival studies propose modeling data with a cure fraction, i.e., data in which part of the population is not susceptible to the event of interest. This event may occur more than once for the same individual (recurrent event). We then have a scenario of recurrent event data in the presence of a cure fraction, which may appear in various areas such as oncology, finance, industries, among others. This paper proposes a multiple time scale survival model to analyze recurrent events using a cure fraction. The objective is analyzing the efficiency of certain interventions so that the studied event will not happen again in terms of covariates and censoring. All estimates were obtained using a sampling-based approach, which allows information to be input beforehand with lower computational effort. Simulations were done based on a clinical scenario in order to observe some frequentist properties of the estimation procedure in the presence of small and moderate sample sizes. An application of a well-known set of real mammary tumor data is provided.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnostic methods have been an important tool in regression analysis to detect anomalies, such as departures from error assumptions and the presence of outliers and influential observations with the fitted models. Assuming censored data, we considered a classical analysis and Bayesian analysis assuming no informative priors for the parameters of the model with a cure fraction. A Bayesian approach was considered by using Markov Chain Monte Carlo Methods with Metropolis-Hasting algorithms steps to obtain the posterior summaries of interest. Some influence methods, such as the local influence, total local influence of an individual, local influence on predictions and generalized leverage were derived, analyzed and discussed in survival data with a cure fraction and covariates. The relevance of the approach was illustrated with a real data set, where it is shown that, by removing the most influential observations, the decision about which model best fits the data is changed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse, may be indicated by a relatively high number of individuals with large censored survival times. In this paper the generalized log-gamma model is modified for the possibility that long-term survivors may be present in the data. The model attempts to separately estimate the effects of covariates on the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. A residual analysis is performed in order to select an appropriate model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mixture model for long-term survivors has been adopted in various fields such as biostatistics and criminology where some individuals may never experience the type of failure under study. It is directly applicable in situations where the only information available from follow-up on individuals who will never experience this type of failure is in the form of censored observations. In this paper, we consider a modification to the model so that it still applies in the case where during the follow-up period it becomes known that an individual will never experience failure from the cause of interest. Unless a model allows for this additional information, a consistent survival analysis will not be obtained. A partial maximum likelihood (ML) approach is proposed that preserves the simplicity of the long-term survival mixture model and provides consistent estimators of the quantities of interest. Some simulation experiments are performed to assess the efficiency of the partial ML approach relative to the full ML approach for survival in the presence of competing risks.