890 resultados para Cross-lingual conceptual-semantic relations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the overall methodology that has been used to encode both the Brazilian Portuguese WordNet (WordNet.Br) standard language-independent conceptual-semantic relations (hyponymy, co-hyponymy, meronymy, cause, and entailment) and the so-called cross-lingual conceptual-semantic relations between different wordnets. Accordingly, after contextualizing the project and outlining the current lexical database structure and statistics, it describes the WordNet.Br editing GUI that was designed to aid the linguist in carrying out the tasks of building synsets, selecting sample sentences from corpora, writing synset concept glosses, and encoding both language-independent conceptual-semantic relations and cross-lingual conceptual-semantic relations between WordNet.Br and Princeton WordNet © Springer-Verlag Berlin Heidelberg 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Semantic Web aims to allow machines to make inferences using the explicit conceptualisations contained in ontologies. By pointing to ontologies, Semantic Web-based applications are able to inter-operate and share common information easily. Nevertheless, multilingual semantic applications are still rare, owing to the fact that most online ontologies are monolingual in English. In order to solve this issue, techniques for ontology localisation and translation are needed. However, traditional machine translation is difficult to apply to ontologies, owing to the fact that ontology labels tend to be quite short in length and linguistically different from the free text paradigm. In this paper, we propose an approach to enhance machine translation of ontologies based on exploiting the well-structured concept descriptions contained in the ontology. In particular, our approach leverages the semantics contained in the ontology by using Cross Lingual Explicit Semantic Analysis (CLESA) for context-based disambiguation in phrase-based Statistical Machine Translation (SMT). The presented work is novel in the sense that application of CLESA in SMT has not been performed earlier to the best of our knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we describe our approach for Cross-Lingual linking of Indian news stories, submitted for Cross-Lingual Indian News Story Search (CL!NSS) task at FIRE 2012. Our approach consists of two major steps, the reduction of search space by using di�erent features and ranking of the news stories according to their relatedness scores. Our approach uses Wikipedia-based Cross-Lingual Explicit Semantic Analysis (CLESA) to calculate the semantic similarity and relatedness score between two news stories in di�erent languages. We evaluate our approach on CL!NSS dataset, which consists of 50 news stories in English and 50K news stories in Hindi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the Semantic Web has experienced significant advancements in standards and techniques, as well as in the amount of semantic information available online. Nevertheless, mechanisms are still needed to automatically reconcile information when it is expressed in different natural languages on the Web of Data, in order to improve the access to semantic information across language barriers. In this context several challenges arise [1], such as: (i) ontology translation/localization, (ii) cross-lingual ontology mappings, (iii) representation of multilingual lexical information, and (iv) cross-lingual access and querying of linked data. In the following we will focus on the second challenge, which is the necessity of establishing, representing and storing cross-lingual links among semantic information on the Web. In fact, in a “truly” multilingual Semantic Web, semantic data with lexical representations in one natural language would be mapped to equivalent or related information in other languages, thus making navigation across multilingual information possible for software agents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates several approaches to bootstrapping a new spoken language understanding (SLU) component in a target language given a large dataset of semantically-annotated utterances in some other source language. The aim is to reduce the cost associated with porting a spoken dialogue system from one language to another by minimising the amount of data required in the target language. Since word-level semantic annotations are costly, Semantic Tuple Classifiers (STCs) are used in conjunction with statistical machine translation models both of which are trained from unaligned data to further reduce development time. The paper presents experiments in which a French SLU component in the tourist information domain is bootstrapped from English data. Results show that training STCs on automatically translated data produced the best performance for predicting the utterance's dialogue act type, however individual slot/value pairs are best predicted by training STCs on the source language and using them to decode translated utterances. © 2010 ISCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, the Semantic Web has experienced signi�cant advancements in standards and techniques, as well as in the amount of semantic information available online. Even so, mechanisms are still needed to automatically reconcile semantic information when it is expressed in di�erent natural languages, so that access to Web information across language barriers can be improved. That requires developing techniques for discovering and representing cross-lingual links on the Web of Data. In this paper we explore the different dimensions of such a problem and reflect on possible avenues of research on that topic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At NTCIR-9, we participated in the cross-lingual link discovery (Crosslink) task. In this paper we describe our approaches to discovering Chinese, Japanese, and Korean (CJK) cross-lingual links for English documents in Wikipedia. Our experimental results show that a link mining approach that mines the existing link structure for anchor probabilities and relies on the “translation” using cross-lingual document name triangulation performs very well. The evaluation shows encouraging results for our system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an overview of NTCIR-9 Cross-lingual Link Discovery (Crosslink) task. The overview includes: the motivation of cross-lingual link discovery; the Crosslink task definition; the run submission specification; the assessment and evaluation framework; the evaluation metrics; and the evaluation results of submitted runs. Cross-lingual link discovery (CLLD) is a way of automatically finding potential links between documents in different languages. The goal of this task is to create a reusable resource for evaluating automated CLLD approaches. The results of this research can be used in building and refining systems for automated link discovery. The task is focused on linking between English source documents and Chinese, Korean, and Japanese target documents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the evaluation in benchmarking the effectiveness of cross-lingual link discovery (CLLD). Cross lingual link discovery is a way of automatically finding prospective links between documents in different languages, which is particularly helpful for knowledge discovery of different language domains. A CLLD evaluation framework is proposed for system performance benchmarking. The framework includes standard document collections, evaluation metrics, and link assessment and evaluation tools. The evaluation methods described in this paper have been utilised to quantify the system performance at NTCIR-9 Crosslink task. It is shown that using the manual assessment for generating gold standard can deliver a more reliable evaluation result.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine automated Chinese to English link discovery in Wikipedia and the effects of Chinese segmentation and Chinese to English translation on the hyperlink recommendation. Our experimental results show that the implemented link discovery framework can effectively recommend Chinese-to-English cross-lingual links. The techniques described here can assist bi-lingual users where a particular topic is not covered in Chinese, is not equally covered in both languages, or is biased in one language; as well as for language learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cross-Lingual Link Discovery (CLLD) is a new problem in Information Retrieval. The aim is to automatically identify meaningful and relevant hypertext links between documents in different languages. This is particularly helpful in knowledge discovery if a multi-lingual knowledge base is sparse in one language or another, or the topical coverage in each language is different; such is the case with Wikipedia. Techniques for identifying new and topically relevant cross-lingual links are a current topic of interest at NTCIR where the CrossLink task has been running since the 2011 NTCIR-9. This paper presents the evaluation framework for benchmarking algorithms for cross-lingual link discovery evaluated in the context of NTCIR-9. This framework includes topics, document collections, assessments, metrics, and a toolkit for pooling, assessment, and evaluation. The assessments are further divided into two separate sets: manual assessments performed by human assessors; and automatic assessments based on links extracted from Wikipedia itself. Using this framework we show that manual assessment is more robust than automatic assessment in the context of cross-lingual link discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an overview of NTCIR-10 Cross-lingual Link Discovery (CrossLink-2) task. For the task, we continued using the evaluation framework developed for the NTCIR-9 CrossLink-1 task. Overall, recommended links were evaluated at two levels (file-to-file and anchor-to-file); and system performance was evaluated with metrics: LMAP, R-Prec and P@N.